Estimate large motions using reliability-based dynamic programming

Minglun Gong, Herbert Yang
{"title":"Estimate large motions using reliability-based dynamic programming","authors":"Minglun Gong, Herbert Yang","doi":"10.1109/ICIP.2004.1421625","DOIUrl":null,"url":null,"abstract":"Detecting and estimating motions of fast moving objects has many important applications. However, most existing motion estimation techniques have difficulties in handling large motions in the scene. In this paper, the reliability-based dynamic programming technique proposed by Gong and Yang is extended and applied to large motion estimation problem. Compared with the Gong and Yang approach, the extended algorithm removes the constant penalty assumption and also explicitly enforces the inter-scanline consistency constraint. The experimental results indicate that the new algorithm can effectively estimate velocities for fast moving objects. The algorithm can also be configured to produce sparse but reliable flow fields.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1421625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detecting and estimating motions of fast moving objects has many important applications. However, most existing motion estimation techniques have difficulties in handling large motions in the scene. In this paper, the reliability-based dynamic programming technique proposed by Gong and Yang is extended and applied to large motion estimation problem. Compared with the Gong and Yang approach, the extended algorithm removes the constant penalty assumption and also explicitly enforces the inter-scanline consistency constraint. The experimental results indicate that the new algorithm can effectively estimate velocities for fast moving objects. The algorithm can also be configured to produce sparse but reliable flow fields.
使用基于可靠性的动态规划估计大型运动
快速运动物体的运动检测和估计有许多重要的应用。然而,大多数现有的运动估计技术在处理场景中的大运动时存在困难。本文对Gong和Yang提出的基于可靠性的动态规划技术进行了扩展,并将其应用于大运动估计问题。与Gong和Yang方法相比,扩展算法消除了恒定惩罚假设,并显式地加强了扫描线间一致性约束。实验结果表明,该算法可以有效地估计快速运动物体的速度。该算法还可以配置为产生稀疏但可靠的流场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信