EHSA Primary Flight Controls Seals Wear Degradation Model

A. Bertolino, Rocco Gentile, G. Jacazio, F. Marino, M. Sorli
{"title":"EHSA Primary Flight Controls Seals Wear Degradation Model","authors":"A. Bertolino, Rocco Gentile, G. Jacazio, F. Marino, M. Sorli","doi":"10.1115/IMECE2018-87080","DOIUrl":null,"url":null,"abstract":"Seals are widely used in hydraulic power systems to prevent fluid leakages. However, several types of degradation can decrease the performance of these components such as wear, which induces changes in the geometry of the cross-section area, influencing their sealing capability. Over the years, their behaviour has been primarily investigated with several theoretical and experimental researches. All these valuable results can be considered as a starting point for further investigations on the interaction between seals and the complete hydraulic equipment and on the root of seals degradation.\n This article proposes a physical model of performance degradation acting on dynamic seals of an electro-hydraulic servo-actuator (EHSA) ram for primary flight controls. In this article, a dynamic non-linear seals degradation model has been developed, based on the Hart-Smith hyperelasticity model, which physically describes the stress and strain of “rubber-like” materials. Similarly, wearing has been assessment by using the Archard’s equation. Furthermore, different operating temperatures have been considered to analyze the effect on seals performances.\n The integration between the mentioned seals degradation model and the high-fidelity model of the complete EHSA allows to evaluate the influence of various wear levels on the actuator behaviour. This research activity is inserted into a more extensive project of Prognostic and Health Management (PHM) of EHSAs. The results of the proposed simulations reveal how the performance of an EHSA can be affected by seals degradations.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Seals are widely used in hydraulic power systems to prevent fluid leakages. However, several types of degradation can decrease the performance of these components such as wear, which induces changes in the geometry of the cross-section area, influencing their sealing capability. Over the years, their behaviour has been primarily investigated with several theoretical and experimental researches. All these valuable results can be considered as a starting point for further investigations on the interaction between seals and the complete hydraulic equipment and on the root of seals degradation. This article proposes a physical model of performance degradation acting on dynamic seals of an electro-hydraulic servo-actuator (EHSA) ram for primary flight controls. In this article, a dynamic non-linear seals degradation model has been developed, based on the Hart-Smith hyperelasticity model, which physically describes the stress and strain of “rubber-like” materials. Similarly, wearing has been assessment by using the Archard’s equation. Furthermore, different operating temperatures have been considered to analyze the effect on seals performances. The integration between the mentioned seals degradation model and the high-fidelity model of the complete EHSA allows to evaluate the influence of various wear levels on the actuator behaviour. This research activity is inserted into a more extensive project of Prognostic and Health Management (PHM) of EHSAs. The results of the proposed simulations reveal how the performance of an EHSA can be affected by seals degradations.
EHSA主要飞行控制密封件磨损退化模型
密封广泛用于液压动力系统,以防止流体泄漏。然而,几种类型的退化会降低这些部件的性能,例如磨损,这会引起截面面积几何形状的变化,从而影响其密封能力。多年来,人们主要通过理论和实验研究来研究它们的行为。所有这些有价值的结果可以被认为是进一步研究密封与整个液压设备之间的相互作用以及密封退化的根源的起点。本文提出了主要飞行控制用电液伺服执行器(EHSA)滑块动态密封作用下性能退化的物理模型。在本文中,基于Hart-Smith超弹性模型,开发了一个动态非线性密封件退化模型,该模型物理地描述了“橡胶样”材料的应力和应变。类似地,磨损也通过阿卡德方程来评估。此外,还考虑了不同的工作温度对密封性能的影响。上述密封件退化模型与完整EHSA的高保真模型之间的集成允许评估各种磨损水平对执行器行为的影响。这项研究活动被纳入一个更广泛的EHSAs预后和健康管理(PHM)项目。所提出的模拟结果揭示了EHSA的性能如何受到密封退化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信