Nonlinear system identification using Extended Possibilitic C-Means algorithm (EPCM) and Particle Swarm Optimization (PSO)

Houcine Lassad, Bouzbida Mohamed, Troudi Ahmed, Chaari Abdelkader
{"title":"Nonlinear system identification using Extended Possibilitic C-Means algorithm (EPCM) and Particle Swarm Optimization (PSO)","authors":"Houcine Lassad, Bouzbida Mohamed, Troudi Ahmed, Chaari Abdelkader","doi":"10.1109/ICEESA.2013.6578422","DOIUrl":null,"url":null,"abstract":"The Takagi-Sugeno fuzzy model is one of the best approaches for modeling and identifying of a nonlinear system. Several algorithms have been proposed in this framework; identify the premise parameters involved in the Takagi-Sugeno fuzzy model, as the fuzzy c-mean algorithm (FCM), the Gustafson Kessel algorithm (GK), PCM algorithm and EPCM algorithm. The implementation of these algorithms in the case of identification of nonlinear stochastic systems shows that this approach to several shortcomings, such as convergence to local optima and sensitivity to initialization (choice of number of clusters) and sensitivity at noise. In this paper, a combination of the EPCM algorithm and the PSO (particle swarm optimization) algorithm is used. However, the consequent parameters are therefore estimated by using the recursive weighted least squares (RWLS) method. The simulation results presented here illustrate the effectiveness of this algorithm.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Takagi-Sugeno fuzzy model is one of the best approaches for modeling and identifying of a nonlinear system. Several algorithms have been proposed in this framework; identify the premise parameters involved in the Takagi-Sugeno fuzzy model, as the fuzzy c-mean algorithm (FCM), the Gustafson Kessel algorithm (GK), PCM algorithm and EPCM algorithm. The implementation of these algorithms in the case of identification of nonlinear stochastic systems shows that this approach to several shortcomings, such as convergence to local optima and sensitivity to initialization (choice of number of clusters) and sensitivity at noise. In this paper, a combination of the EPCM algorithm and the PSO (particle swarm optimization) algorithm is used. However, the consequent parameters are therefore estimated by using the recursive weighted least squares (RWLS) method. The simulation results presented here illustrate the effectiveness of this algorithm.
基于扩展可能c均值算法和粒子群算法的非线性系统辨识
Takagi-Sugeno模糊模型是非线性系统建模和辨识的最佳方法之一。在这个框架中提出了几种算法;识别Takagi-Sugeno模糊模型所涉及的前提参数,如模糊c均值算法(FCM)、Gustafson Kessel算法(GK)、PCM算法和EPCM算法。这些算法在非线性随机系统识别中的实现表明,这种方法存在一些缺点,如收敛于局部最优、对初始化(簇数的选择)的敏感性和对噪声的敏感性。本文将EPCM算法与粒子群优化(PSO)算法相结合。因此,后续参数的估计采用递推加权最小二乘(RWLS)方法。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信