Face recognition using adaptive local directional pattern

Guangchao Yang, Bin Fang
{"title":"Face recognition using adaptive local directional pattern","authors":"Guangchao Yang, Bin Fang","doi":"10.1109/SPAC.2017.8304304","DOIUrl":null,"url":null,"abstract":"Robust facial representation approach is critical for face recognition. LDP is a more stable robust descriptor using gradient direction instead of intensity value. But it is less precise to treat the directional response values in the same way and it does not obtain enough information only considering fixed absolute values of the edge responses. we propose an adaptive local directional pattern (ALDP) feature descriptor for face recognition in this paper. Positive and negative edge directions are extracted to explore more valuable discriminant information in our ALDP. Based on Weber's law, an automatic threshold setting strategy is proposed to make the ALDP codes flexible and precise. The experiment results indicate our ALDP has higher recognition accuracy in comparison with traditional methods.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robust facial representation approach is critical for face recognition. LDP is a more stable robust descriptor using gradient direction instead of intensity value. But it is less precise to treat the directional response values in the same way and it does not obtain enough information only considering fixed absolute values of the edge responses. we propose an adaptive local directional pattern (ALDP) feature descriptor for face recognition in this paper. Positive and negative edge directions are extracted to explore more valuable discriminant information in our ALDP. Based on Weber's law, an automatic threshold setting strategy is proposed to make the ALDP codes flexible and precise. The experiment results indicate our ALDP has higher recognition accuracy in comparison with traditional methods.
基于自适应局部方向模式的人脸识别
鲁棒的面部表征方法是人脸识别的关键。LDP是一种使用梯度方向代替强度值的更稳定的鲁棒描述子。但以同样的方式处理方向响应值精度较低,仅考虑边缘响应的固定绝对值不能获得足够的信息。提出了一种用于人脸识别的自适应局部方向模式(ALDP)特征描述符。在我们的ALDP中,我们提取了正、负边方向,以探索更有价值的判别信息。基于韦伯定律,提出了一种自动阈值设置策略,使ALDP编码灵活、精确。实验结果表明,与传统方法相比,该方法具有更高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信