{"title":"iSEE: Efficient Continuous K-Nearest-Neighbor Monitoring over Moving Objects","authors":"Wei Wu, K. Tan","doi":"10.1109/SSDBM.2007.37","DOIUrl":null,"url":null,"abstract":"In this paper, we propose iSEE, a set of algorithms for efficient processing of continuous k-nearest-neighbor (CKNN) queries over moving objects. iSEE utilizes a grid index and incrementally updates the queries' results based on moving objects' explicit location update messages. We have three innovations in iSEE: a Visit Order Builder (VOB) method that dynamically constructs a query's optimal visit order to the cells in the grid index with low cost, an Efficient Expand (EFEX) algorithm which avoids unnecessary and redundant searching when updating a query's result, and an efficient algorithm that quickly identifies the cells that should be updated after a query's result is changed. Experimental results show that iSEE achieves a 2X speedup, when compared with the state-of-the-art CPM scheme.","PeriodicalId":122925,"journal":{"name":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2007.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
In this paper, we propose iSEE, a set of algorithms for efficient processing of continuous k-nearest-neighbor (CKNN) queries over moving objects. iSEE utilizes a grid index and incrementally updates the queries' results based on moving objects' explicit location update messages. We have three innovations in iSEE: a Visit Order Builder (VOB) method that dynamically constructs a query's optimal visit order to the cells in the grid index with low cost, an Efficient Expand (EFEX) algorithm which avoids unnecessary and redundant searching when updating a query's result, and an efficient algorithm that quickly identifies the cells that should be updated after a query's result is changed. Experimental results show that iSEE achieves a 2X speedup, when compared with the state-of-the-art CPM scheme.