Long Short-Term Memory with Slower Information Decay

H. Chien, Javier Turek, Nicole M. Beckage, Vy A. Vo, C. Honey, Ted L. Willke
{"title":"Long Short-Term Memory with Slower Information Decay","authors":"H. Chien, Javier Turek, Nicole M. Beckage, Vy A. Vo, C. Honey, Ted L. Willke","doi":"10.52591/2021072418","DOIUrl":null,"url":null,"abstract":"Learning to process long-range dependencies has been a challenge for recurrent neural networks. Despite improvements achieved by long shortterm memory (LSTMs), its gating mechanism results in exponential decay of information, limiting their capacity of capturing long-range dependencies. In this work, we present a power law forget gate, which instead has a slower rate of information decay. We propose a power law-based LSTM (pLSTM) based on the LSTM but with a power law forget gate. We test empirically the pLSTM on the copy task, sentiment classification, and sequential MNIST, all with long-range dependency tasks. The pLSTM solves these tasks outperforming an LSTM, specially for long-range dependencies. Further, the pLSTM learns sparser and more robust representations.","PeriodicalId":196347,"journal":{"name":"LatinX in AI at International Conference on Machine Learning 2021","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at International Conference on Machine Learning 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/2021072418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning to process long-range dependencies has been a challenge for recurrent neural networks. Despite improvements achieved by long shortterm memory (LSTMs), its gating mechanism results in exponential decay of information, limiting their capacity of capturing long-range dependencies. In this work, we present a power law forget gate, which instead has a slower rate of information decay. We propose a power law-based LSTM (pLSTM) based on the LSTM but with a power law forget gate. We test empirically the pLSTM on the copy task, sentiment classification, and sequential MNIST, all with long-range dependency tasks. The pLSTM solves these tasks outperforming an LSTM, specially for long-range dependencies. Further, the pLSTM learns sparser and more robust representations.
具有较慢信息衰减的长短期记忆
学习处理远程依赖关系一直是递归神经网络面临的挑战。尽管长短期记忆(LSTMs)取得了进步,但其门控机制导致信息呈指数衰减,限制了它们捕获长期依赖关系的能力。在这项工作中,我们提出了一个幂律遗忘门,它具有较慢的信息衰减速率。我们提出了一种基于幂律的LSTM (pLSTM),它在LSTM的基础上增加了幂律遗忘门。我们在复制任务、情感分类和顺序MNIST上对pLSTM进行了经验测试,所有这些都具有远程依赖任务。pLSTM比LSTM更好地解决了这些任务,特别是对于远程依赖项。此外,pLSTM学习更稀疏和更健壮的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信