Extracting human behavioral biometrics from robot motions

Long Huang, Zhen Meng, Zeyu Deng, Chen Wang, Liying Li, Guodong Zhao
{"title":"Extracting human behavioral biometrics from robot motions","authors":"Long Huang, Zhen Meng, Zeyu Deng, Chen Wang, Liying Li, Guodong Zhao","doi":"10.1145/3447993.3482860","DOIUrl":null,"url":null,"abstract":"Motion-controlled robots allow a user to interact with a remote real world without physically reaching it. By connecting cyberspace to the physical world, such interactive teleoperations are promising to improve remote education, virtual social interactions and online participatory activities. This work builds up a motion-controlled robotic arm framework and proposes to verify who is controlling the robotic arm by examining the robotic arm's behavior. We show that a robotic arm's motion inherits its human controller's behavioral biometric in interactive control scenarios. Furthermore, we derive the unique robotic motion features to capture the user's behavioral biometric embedded in the robot motions and develop learning-based algorithms to verify the robotic arm user. Extensive experiments show that our system achieves high accuracy to distinguish users while using the robot's behaviors.","PeriodicalId":177431,"journal":{"name":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447993.3482860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Motion-controlled robots allow a user to interact with a remote real world without physically reaching it. By connecting cyberspace to the physical world, such interactive teleoperations are promising to improve remote education, virtual social interactions and online participatory activities. This work builds up a motion-controlled robotic arm framework and proposes to verify who is controlling the robotic arm by examining the robotic arm's behavior. We show that a robotic arm's motion inherits its human controller's behavioral biometric in interactive control scenarios. Furthermore, we derive the unique robotic motion features to capture the user's behavioral biometric embedded in the robot motions and develop learning-based algorithms to verify the robotic arm user. Extensive experiments show that our system achieves high accuracy to distinguish users while using the robot's behaviors.
从机器人动作中提取人类行为生物特征
运动控制机器人允许用户与远程现实世界进行交互,而无需实际接触。通过将网络空间与物理世界连接起来,这种交互式远程操作有望改善远程教育、虚拟社会互动和在线参与活动。本工作建立了一个运动控制的机械臂框架,并提出通过检测机械臂的行为来验证谁在控制机械臂。我们展示了在交互控制场景中,机械臂的运动继承了人类控制器的行为生物特征。此外,我们推导出独特的机器人运动特征来捕捉嵌入在机器人运动中的用户行为生物特征,并开发基于学习的算法来验证机械臂用户。大量的实验表明,我们的系统在利用机器人的行为识别用户时达到了很高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信