R. Baldewsing, C. D. de Korte, F. Mastik, J. Schaar, A. V. D. van der Steen
{"title":"Comparison of finite elements model elastograms and IVUS elastograms acquired from phantoms and arteries","authors":"R. Baldewsing, C. D. de Korte, F. Mastik, J. Schaar, A. V. D. van der Steen","doi":"10.1109/ULTSYM.2002.1192674","DOIUrl":null,"url":null,"abstract":"Knowledge of the Young's modulus distribution of an atherosclerotic artery allows for differentiation between its components. Intravascular elastography generates an artifactual image of this Young's modulus distribution. A finite element model (FEM) can assist in interpreting the elastogram and give its Young's modulus distribution by inverse problem solution. Intravascular ultrasound (IVUS) measurements were performed on a hard phantom with soft eccentric plaque and an atherosclerotic coronary artery. The complex FEM geometry and Young's modulus distribution were defined using a custom-made graphical user interface. Next elastograms were calculated from IVUS data and compared with FEM elastograms. IVUS and FEM elastograms showed excellent agreement in case of the phantom and a similar pattern in case of the artery. Strain values in the FEM elastogram appeared highly sensitive for variations in the Young's modulus but not in the Poisson's ratio.","PeriodicalId":378705,"journal":{"name":"2002 IEEE Ultrasonics Symposium, 2002. Proceedings.","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE Ultrasonics Symposium, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2002.1192674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Knowledge of the Young's modulus distribution of an atherosclerotic artery allows for differentiation between its components. Intravascular elastography generates an artifactual image of this Young's modulus distribution. A finite element model (FEM) can assist in interpreting the elastogram and give its Young's modulus distribution by inverse problem solution. Intravascular ultrasound (IVUS) measurements were performed on a hard phantom with soft eccentric plaque and an atherosclerotic coronary artery. The complex FEM geometry and Young's modulus distribution were defined using a custom-made graphical user interface. Next elastograms were calculated from IVUS data and compared with FEM elastograms. IVUS and FEM elastograms showed excellent agreement in case of the phantom and a similar pattern in case of the artery. Strain values in the FEM elastogram appeared highly sensitive for variations in the Young's modulus but not in the Poisson's ratio.