{"title":"A Layered Coordinated Trajectory Tracking for High- Speed A-4WID-EV in Extreme Conditions","authors":"Cong Liu, Hui Liu, Lijin Han, C. Xiang, Bin Xu","doi":"10.1109/CVCI51460.2020.9338473","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of trajectory tracking and handling stability for high-speed autonomous vehicle in extreme conditions, a novel trajectory tracking layered coordinated control strategy based on future driving state prediction for autonomous four-wheel independent drive electric vehicle (A-4WID-EV) is proposed, For the upper controller, a driving state prediction algorithm based on the variable-order Markov model with dynamic window is proposed to predict the driving state in the future. For the lower controller, an active front wheel angle control strategy based on multi-scale model predictive control (MPC) is designed to provide vehicle front wheel angle. Meanwhile, a coordinated four-wheel drive torque control strategy based on the future driving state is proposed to ensure the lateral stability during the trajectory tracking. Finally, through the CarSim-Matlab/Simulink co-simulations, the results show that the proposed controller can effectively improve accuracy trajectory tracking and lateral stability of highspeed A-4WID-EV in extreme conditions.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to improve the accuracy of trajectory tracking and handling stability for high-speed autonomous vehicle in extreme conditions, a novel trajectory tracking layered coordinated control strategy based on future driving state prediction for autonomous four-wheel independent drive electric vehicle (A-4WID-EV) is proposed, For the upper controller, a driving state prediction algorithm based on the variable-order Markov model with dynamic window is proposed to predict the driving state in the future. For the lower controller, an active front wheel angle control strategy based on multi-scale model predictive control (MPC) is designed to provide vehicle front wheel angle. Meanwhile, a coordinated four-wheel drive torque control strategy based on the future driving state is proposed to ensure the lateral stability during the trajectory tracking. Finally, through the CarSim-Matlab/Simulink co-simulations, the results show that the proposed controller can effectively improve accuracy trajectory tracking and lateral stability of highspeed A-4WID-EV in extreme conditions.