Automatic content segmentation of audio recordings at multidisciplinary medical team meetings

Jing Su, B. Kane, S. Luz
{"title":"Automatic content segmentation of audio recordings at multidisciplinary medical team meetings","authors":"Jing Su, B. Kane, S. Luz","doi":"10.1109/INFTECH.2008.4621647","DOIUrl":null,"url":null,"abstract":"A single recording of a multidisciplinary medical team meeting (MDTM) can be expected to contain several separate discussions on different patients. Automatic speaker segmentation alone does not allow for the separation of individual patient case discussions (PCDs). A novel method is presented here, based on Hidden Markov Models (HMM), to segment audio recordings of MDTMs and facilitate the non-linear retrieval of individual PCDs. The method combines professional role interaction with speaker vocalization patterns. The sequence and duration of vocalization and speakerspsila roles are used as training states. Results demonstrate HMM segmentation to have good potential in the development of an MDTM browser. The approach outlined here can be applied in a wide range of meetings.","PeriodicalId":247264,"journal":{"name":"2008 1st International Conference on Information Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 1st International Conference on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFTECH.2008.4621647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A single recording of a multidisciplinary medical team meeting (MDTM) can be expected to contain several separate discussions on different patients. Automatic speaker segmentation alone does not allow for the separation of individual patient case discussions (PCDs). A novel method is presented here, based on Hidden Markov Models (HMM), to segment audio recordings of MDTMs and facilitate the non-linear retrieval of individual PCDs. The method combines professional role interaction with speaker vocalization patterns. The sequence and duration of vocalization and speakerspsila roles are used as training states. Results demonstrate HMM segmentation to have good potential in the development of an MDTM browser. The approach outlined here can be applied in a wide range of meetings.
多学科医疗团队会议音频记录的自动内容分割
多学科医疗小组会议(MDTM)的单一记录可能包含针对不同患者的若干单独讨论。单独的自动说话人分割不允许个别病例讨论(PCDs)的分离。本文提出了一种基于隐马尔可夫模型(HMM)的新方法,用于分割mdtm的音频记录,并促进单个pcd的非线性检索。该方法结合了专业角色互动和说话人的发声模式。发声的顺序和持续时间以及说话者角色被用作训练状态。结果表明HMM分割在MDTM浏览器开发中具有良好的潜力。这里概述的方法可以应用于各种各样的会议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信