{"title":"Sustainability assurance modeling for SRAM-based FPGA evolutionary self-repair","authors":"R. Oreifej, R. Al-Haddad, R. Ashraf, R. Demara","doi":"10.1109/ICES.2014.7008717","DOIUrl":null,"url":null,"abstract":"A quantitative stochastic design technique is developed for evolvable hardware systems with self-repairing, replaceable, or amorphous spare components. The model develops a metric of sustainability which is defined in terms of residual functionality achieved from pools of amorphous spares of dynamically configurable logic elements, after repeated failure and recovery cycles. At design-time the quantity of additional resources needed to meet mission availability and lifetime requirements given the fault-susceptibility and recovery capabilities are assured within specified constraints. By applying this model to MCNC benchmark circuits mapped onto Xilinx Virtex-4 Field Programmable Gate Array (FPGA) with reconfigurable logic resources, we depict the effect of fault rates for aging-induced degradation under Time Dependent Dielectric Breakdown (TDDB) and interconnect failure under Electromigration (EM). The model considers a population-based genetic algorithm to refurbish hardware resources which realize repair policy parameters and decaying reparability as a complete case-study using published component failure rates.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Evolvable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICES.2014.7008717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A quantitative stochastic design technique is developed for evolvable hardware systems with self-repairing, replaceable, or amorphous spare components. The model develops a metric of sustainability which is defined in terms of residual functionality achieved from pools of amorphous spares of dynamically configurable logic elements, after repeated failure and recovery cycles. At design-time the quantity of additional resources needed to meet mission availability and lifetime requirements given the fault-susceptibility and recovery capabilities are assured within specified constraints. By applying this model to MCNC benchmark circuits mapped onto Xilinx Virtex-4 Field Programmable Gate Array (FPGA) with reconfigurable logic resources, we depict the effect of fault rates for aging-induced degradation under Time Dependent Dielectric Breakdown (TDDB) and interconnect failure under Electromigration (EM). The model considers a population-based genetic algorithm to refurbish hardware resources which realize repair policy parameters and decaying reparability as a complete case-study using published component failure rates.