Parser-directed fuzzing

Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, M. Höschele, A. Zeller
{"title":"Parser-directed fuzzing","authors":"Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, M. Höschele, A. Zeller","doi":"10.1145/3314221.3314651","DOIUrl":null,"url":null,"abstract":"To be effective, software test generation needs to well cover the space of possible inputs. Traditional fuzzing generates large numbers of random inputs, which however are unlikely to contain keywords and other specific inputs of non-trivial input languages. Constraint-based test generation solves conditions of paths leading to uncovered code, but fails on programs with complex input conditions because of path explosion. In this paper, we present a test generation technique specifically directed at input parsers. We systematically produce inputs for the parser and track comparisons made; after every rejection, we satisfy the comparisons leading to rejection. This approach effectively covers the input space: Evaluated on five subjects, from CSV files to JavaScript, our pFuzzer prototype covers more tokens than both random-based and constraint-based approaches, while requiring no symbolic analysis and far fewer tests than random fuzzers.","PeriodicalId":441774,"journal":{"name":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314221.3314651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

To be effective, software test generation needs to well cover the space of possible inputs. Traditional fuzzing generates large numbers of random inputs, which however are unlikely to contain keywords and other specific inputs of non-trivial input languages. Constraint-based test generation solves conditions of paths leading to uncovered code, but fails on programs with complex input conditions because of path explosion. In this paper, we present a test generation technique specifically directed at input parsers. We systematically produce inputs for the parser and track comparisons made; after every rejection, we satisfy the comparisons leading to rejection. This approach effectively covers the input space: Evaluated on five subjects, from CSV files to JavaScript, our pFuzzer prototype covers more tokens than both random-based and constraint-based approaches, while requiring no symbolic analysis and far fewer tests than random fuzzers.
Parser-directed起毛
为了有效,软件测试生成需要很好地覆盖可能输入的空间。传统的模糊测试产生大量的随机输入,但是这些随机输入不太可能包含关键字和其他非平凡输入语言的特定输入。基于约束的测试生成解决了导致未覆盖代码的路径条件,但由于路径爆炸,在具有复杂输入条件的程序中失败。在本文中,我们提出了一种专门针对输入解析器的测试生成技术。我们系统地为解析器生成输入并跟踪所做的比较;每次拒绝之后,我们都会满足导致拒绝的比较。这种方法有效地覆盖了输入空间:在五个主题上进行评估,从CSV文件到JavaScript,我们的pFuzzer原型涵盖了比基于随机和基于约束的方法更多的令牌,同时不需要符号分析,测试也比随机fuzzer少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信