Hybrid recommenders: incorporating metadata awareness into latent factor models

Edson B. Santos Junior, M. Manzato, R. Goularte
{"title":"Hybrid recommenders: incorporating metadata awareness into latent factor models","authors":"Edson B. Santos Junior, M. Manzato, R. Goularte","doi":"10.1145/2526188.2526197","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid recommender algorithm which integrates a set of different user's inputs into a unified and generic latent factor model to improve prediction accuracy. The technique can exploit users' demographics, such as age, gender and occupation, along with implicit feedback and items' metadata. Depending on the personal information from users, the recommender selects content whose subject is semantically related to their interests. The method was evaluated in the MovieLens dataset and compared against other approaches reported in the literature. The results show the effectiveness of incorporating metadata awareness into a latent factor model.","PeriodicalId":114454,"journal":{"name":"Brazilian Symposium on Multimedia and the Web","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2526188.2526197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a hybrid recommender algorithm which integrates a set of different user's inputs into a unified and generic latent factor model to improve prediction accuracy. The technique can exploit users' demographics, such as age, gender and occupation, along with implicit feedback and items' metadata. Depending on the personal information from users, the recommender selects content whose subject is semantically related to their interests. The method was evaluated in the MovieLens dataset and compared against other approaches reported in the literature. The results show the effectiveness of incorporating metadata awareness into a latent factor model.
混合推荐:将元数据感知整合到潜在因素模型中
本文提出了一种混合推荐算法,该算法将一组不同的用户输入集成到一个统一的通用潜在因素模型中,以提高预测精度。该技术可以利用用户的人口统计数据,如年龄、性别和职业,以及隐性反馈和项目的元数据。根据用户的个人信息,推荐器选择与用户兴趣在语义上相关的内容。该方法在MovieLens数据集中进行了评估,并与文献中报道的其他方法进行了比较。结果表明,将元数据感知纳入潜在因素模型是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信