MapReader

Kasra Hosseini, Daniel C. S. Wilson, K. Beelen, Katherine McDonough
{"title":"MapReader","authors":"Kasra Hosseini, Daniel C. S. Wilson, K. Beelen, Katherine McDonough","doi":"10.1145/3557919.3565812","DOIUrl":null,"url":null,"abstract":"We present MapReader, a free, open-source software library written in Python for analyzing large map collections. MapReader allows users with little computer vision expertise to i) retrieve maps via web-servers; ii) preprocess and divide them into patches; iii) annotate patches; iv) train, fine-tune, and evaluate deep neural network models; and v) create structured data about map content. We demonstrate how MapReader enables historians to interpret a collection of ≈16K nineteenth-century maps of Britain (≈30.5M patches), foregrounding the challenge of translating visual markers into machine-readable data. We present a case study focusing on rail and buildings. We also show how the outputs from the MapReader pipeline can be linked to other, external datasets. We release ≈62K manually annotated patches used here for training and evaluating the models.","PeriodicalId":262118,"journal":{"name":"Proceedings of the 6th ACM SIGSPATIAL International Workshop on Geospatial Humanities","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th ACM SIGSPATIAL International Workshop on Geospatial Humanities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3557919.3565812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present MapReader, a free, open-source software library written in Python for analyzing large map collections. MapReader allows users with little computer vision expertise to i) retrieve maps via web-servers; ii) preprocess and divide them into patches; iii) annotate patches; iv) train, fine-tune, and evaluate deep neural network models; and v) create structured data about map content. We demonstrate how MapReader enables historians to interpret a collection of ≈16K nineteenth-century maps of Britain (≈30.5M patches), foregrounding the challenge of translating visual markers into machine-readable data. We present a case study focusing on rail and buildings. We also show how the outputs from the MapReader pipeline can be linked to other, external datasets. We release ≈62K manually annotated patches used here for training and evaluating the models.
MapReader
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信