Chapter 5

Phanhpakit Onphanhdala
{"title":"Chapter 5","authors":"Phanhpakit Onphanhdala","doi":"10.1525/9780520974173-011","DOIUrl":null,"url":null,"abstract":"If you have no data at all, use the worksheet in section 5.1, which projects a variety of assumed growth patterns into the future. When data develop, use the models in sections 5.2-5.5 to fit growth curves or functions of time using ordinary-least-squares regression. The linear growth model (Section 5.2) predicts a constant amount of growth each time period, while the exponential (Section 5.3) predicts constant percentage growth. In both linear and exponential growth, the forecasts are unbounded. In the modified exponential (Section 5.4) and logistic (Section 5.5) models, the amount of growth declines each period, so the forecasts are bounded by a saturation level.","PeriodicalId":268521,"journal":{"name":"The Likeness","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Likeness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1525/9780520974173-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If you have no data at all, use the worksheet in section 5.1, which projects a variety of assumed growth patterns into the future. When data develop, use the models in sections 5.2-5.5 to fit growth curves or functions of time using ordinary-least-squares regression. The linear growth model (Section 5.2) predicts a constant amount of growth each time period, while the exponential (Section 5.3) predicts constant percentage growth. In both linear and exponential growth, the forecasts are unbounded. In the modified exponential (Section 5.4) and logistic (Section 5.5) models, the amount of growth declines each period, so the forecasts are bounded by a saturation level.
第五章
如果根本没有数据,请使用第5.1节中的工作表,其中预测了未来的各种假定增长模式。当数据发展时,使用5.2-5.5节中的模型使用普通最小二乘回归拟合生长曲线或时间函数。线性增长模型(第5.2节)预测每个时间段的增长率是恒定的,而指数增长模型(第5.3节)预测的增长率是恒定的。无论是线性增长还是指数增长,预测都是无界的。在修正的指数(第5.4节)和逻辑(第5.5节)模型中,每个时期的增长量都会下降,因此预测受到饱和水平的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信