A data-driven sigmoid-based PI controller for buck-converter powered DC motor

M. Ahmad, R. Ismail
{"title":"A data-driven sigmoid-based PI controller for buck-converter powered DC motor","authors":"M. Ahmad, R. Ismail","doi":"10.1109/ISCAIE.2017.8074954","DOIUrl":null,"url":null,"abstract":"This paper presents a novel data-driven sigmoid-based PI for tracking of angular velocity of dc motor powered by a dc/dc buck converter. A global simultaneous perturbation stochastic approximation (GSPSA) is employed to find the optimum sigmoid-based PI parameters such that the angular velocity error is minimized. The merit of the proposed approach is that it can produce fast PI parameter tuning without using any plant model by measuring the I/O data of the system. Moreover, the proposed PI parameters that are varied based on sigmoid function of angular velocity error has great potential in improving the control performance compared to the conventional PI controller. A well-known buck converter powered DC motor model is considered to validate our data-driven design. In addition, the performances of the proposed method are examined in terms of angular velocity trajectory tracking and duty cycle in comparison with other existing approaches. Numerical example shows that the data-driven sigmoid-based PI approach provides better control performances as compared to existing methods.","PeriodicalId":298950,"journal":{"name":"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAIE.2017.8074954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper presents a novel data-driven sigmoid-based PI for tracking of angular velocity of dc motor powered by a dc/dc buck converter. A global simultaneous perturbation stochastic approximation (GSPSA) is employed to find the optimum sigmoid-based PI parameters such that the angular velocity error is minimized. The merit of the proposed approach is that it can produce fast PI parameter tuning without using any plant model by measuring the I/O data of the system. Moreover, the proposed PI parameters that are varied based on sigmoid function of angular velocity error has great potential in improving the control performance compared to the conventional PI controller. A well-known buck converter powered DC motor model is considered to validate our data-driven design. In addition, the performances of the proposed method are examined in terms of angular velocity trajectory tracking and duty cycle in comparison with other existing approaches. Numerical example shows that the data-driven sigmoid-based PI approach provides better control performances as compared to existing methods.
一种数据驱动的基于sigmoid的直流电机PI控制器
本文提出了一种基于数据驱动的s型PI,用于跟踪由dc/dc buck变换器供电的直流电机的角速度。采用全局同步摄动随机逼近(GSPSA)求出最优的基于s型的PI参数,使角速度误差最小。该方法的优点是它可以在不使用任何工厂模型的情况下通过测量系统的I/O数据来产生快速的PI参数调优。此外,与传统的PI控制器相比,基于角速度误差的s型函数变化的PI参数具有很大的改善控制性能的潜力。考虑了一个知名的降压变换器驱动的直流电机模型来验证我们的数据驱动设计。此外,从角速度、轨迹跟踪和占空比等方面对所提方法的性能进行了比较。数值算例表明,与现有方法相比,基于数据驱动的sigmoid PI方法具有更好的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信