Maximum Spectral Measures of Risk with Given Risk Factor Marginal Distributions

Mario Ghossoub, Jesse Hall, D. Saunders
{"title":"Maximum Spectral Measures of Risk with Given Risk Factor Marginal Distributions","authors":"Mario Ghossoub, Jesse Hall, D. Saunders","doi":"10.2139/ssrn.3720332","DOIUrl":null,"url":null,"abstract":"We consider the problem of determining an upper bound for the value of a spectral risk measure of a loss that is a general nonlinear function of two factors whose marginal distributions are known but whose joint distribution is unknown. The factors may take values in complete separable metric spaces. We introduce the notion of Maximum Spectral Measure (MSM), as a worst-case spectral risk measure of the loss with respect to the dependence between the factors. The MSM admits a formulation as a solution to an optimization problem that has the same constraint set as the optimal transport problem but with a more general objective function. We present results analogous to the Kantorovich duality, and we investigate the continuity properties of the optimal value function and optimal solution set with respect to perturbation of the marginal distributions. Additionally, we provide an asymptotic result characterizing the limiting distribution of the optimal value function when the factor distributions are simulated from finite sample spaces. The special case of Expected Shortfall and the resulting Maximum Expected Shortfall is also examined.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3720332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider the problem of determining an upper bound for the value of a spectral risk measure of a loss that is a general nonlinear function of two factors whose marginal distributions are known but whose joint distribution is unknown. The factors may take values in complete separable metric spaces. We introduce the notion of Maximum Spectral Measure (MSM), as a worst-case spectral risk measure of the loss with respect to the dependence between the factors. The MSM admits a formulation as a solution to an optimization problem that has the same constraint set as the optimal transport problem but with a more general objective function. We present results analogous to the Kantorovich duality, and we investigate the continuity properties of the optimal value function and optimal solution set with respect to perturbation of the marginal distributions. Additionally, we provide an asymptotic result characterizing the limiting distribution of the optimal value function when the factor distributions are simulated from finite sample spaces. The special case of Expected Shortfall and the resulting Maximum Expected Shortfall is also examined.
给定风险因子边际分布的最大风险谱测度
我们考虑一个损失的谱风险测度值的上界的确定问题,该损失是两个因素的一般非线性函数,其边际分布已知,但其联合分布未知。因子可以在完全可分度量空间中取值。我们引入了最大谱测度(MSM)的概念,作为最坏情况下的谱风险度量。MSM允许一个公式作为与最优运输问题具有相同约束集但具有更一般目标函数的优化问题的解。我们给出了类似于Kantorovich对偶的结果,并研究了最优值函数和最优解集关于边际分布摄动的连续性。此外,我们还给出了在有限样本空间模拟因子分布时最优值函数的极限分布的渐近结果。本文还研究了预期缺口和由此产生的最大预期缺口的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信