Distributed feature-based modulation classification using wireless sensor networks

P. Forero, A. Cano, G. Giannakis
{"title":"Distributed feature-based modulation classification using wireless sensor networks","authors":"P. Forero, A. Cano, G. Giannakis","doi":"10.1109/MILCOM.2008.4753252","DOIUrl":null,"url":null,"abstract":"Automatic modulation classification (AMC) is a critical prerequisite for demodulation of communication signals in tactical scenarios. Depending on the number of unknown parameters involved, the complexity of AMC can be prohibitive. Existing maximum-likelihood and feature-based approaches rely on centralized processing. The present paper develops AMC algorithms using spatially distributed sensors, each acquiring relevant features of the received signal. Individual sensors may be unable to extract all relevant features to reach a reliable classification decision. However, the cooperative in-network approach developed enables high classification rates at reduced-overhead, even when features are noisy and/or missing. Simulated tests illustrate the performance of the novel distributed AMC scheme.","PeriodicalId":434891,"journal":{"name":"MILCOM 2008 - 2008 IEEE Military Communications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2008 - 2008 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2008.4753252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Automatic modulation classification (AMC) is a critical prerequisite for demodulation of communication signals in tactical scenarios. Depending on the number of unknown parameters involved, the complexity of AMC can be prohibitive. Existing maximum-likelihood and feature-based approaches rely on centralized processing. The present paper develops AMC algorithms using spatially distributed sensors, each acquiring relevant features of the received signal. Individual sensors may be unable to extract all relevant features to reach a reliable classification decision. However, the cooperative in-network approach developed enables high classification rates at reduced-overhead, even when features are noisy and/or missing. Simulated tests illustrate the performance of the novel distributed AMC scheme.
基于无线传感器网络的分布式特征调制分类
自动调制分类(AMC)是战术通信信号解调的关键前提。根据所涉及的未知参数的数量,AMC的复杂性可能令人望而却步。现有的最大似然和基于特征的方法依赖于集中处理。本文利用空间分布的传感器开发AMC算法,每个传感器获取接收信号的相关特征。单个传感器可能无法提取所有相关特征以获得可靠的分类决策。然而,所开发的网络内协作方法可以在降低开销的情况下实现高分类率,即使特征有噪声和/或缺失。仿真实验验证了该分布式AMC方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信