Reduced Complexity Approach for Uplink Rate Trajectory Prediction in Mobile Networks

G. Nikolov, M. Kuhn, A. Mcgibney, Bernd-Ludwig Wenning
{"title":"Reduced Complexity Approach for Uplink Rate Trajectory Prediction in Mobile Networks","authors":"G. Nikolov, M. Kuhn, A. Mcgibney, Bernd-Ludwig Wenning","doi":"10.1109/ISSC49989.2020.9180156","DOIUrl":null,"url":null,"abstract":"This paper presents a novel data rate prediction scheme. By combining online data rate estimation techniques with Long Short-Term Memory (LSTM) Neural Networks (NN), we are able to forecast the near future behaviour of the mobile channel. The prediction scheme is evaluated on data sets obtained from private and commercial mobile networks. By utilizing a Dense-Sparse-Dense (DSD) training in conjunction with weight rounding we reduce the size by a factor of 7.36 and complexity by 57% without any loss in accuracy of the model. Such an approach is especially attractive for low-end embedded-based hardware solutions where memory and processing power are limited.","PeriodicalId":351013,"journal":{"name":"2020 31st Irish Signals and Systems Conference (ISSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC49989.2020.9180156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel data rate prediction scheme. By combining online data rate estimation techniques with Long Short-Term Memory (LSTM) Neural Networks (NN), we are able to forecast the near future behaviour of the mobile channel. The prediction scheme is evaluated on data sets obtained from private and commercial mobile networks. By utilizing a Dense-Sparse-Dense (DSD) training in conjunction with weight rounding we reduce the size by a factor of 7.36 and complexity by 57% without any loss in accuracy of the model. Such an approach is especially attractive for low-end embedded-based hardware solutions where memory and processing power are limited.
移动网络上行速率轨迹预测的降低复杂度方法
提出了一种新的数据速率预测方案。通过将在线数据速率估计技术与长短期记忆(LSTM)神经网络(NN)相结合,我们能够预测移动信道的近期行为。在私有和商用移动网络的数据集上对该预测方案进行了评估。通过使用密集-稀疏-密集(DSD)训练与权值舍入相结合,我们将模型的大小减少了7.36,复杂性减少了57%,而模型的准确性没有任何损失。这种方法对于内存和处理能力有限的低端嵌入式硬件解决方案特别有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信