Every list-decodable code for high noise has abundant near-optimal rate puncturings

A. Rudra, Mary Wootters
{"title":"Every list-decodable code for high noise has abundant near-optimal rate puncturings","authors":"A. Rudra, Mary Wootters","doi":"10.1145/2591796.2591797","DOIUrl":null,"url":null,"abstract":"We show that any q-ary code with sufficiently good distance can be randomly punctured to obtain, with high probability, a code that is list decodable up to radius 1 --- 1/q --- ε with near-optimal rate and list sizes. Our results imply that \"most\" Reed-Solomon codes are list decodable beyond the Johnson bound, settling the longstanding open question of whether any Reed Solomon codes meet this criterion. More precisely, we show that a Reed-Solomon code with random evaluation points is, with high probability, list decodable up to radius 1 --- ε with list sizes O(1/ε) and rate Ω(ε). As a second corollary of our argument, we obtain improved bounds on the list decodability of random linear codes over large fields. Our approach exploits techniques from high dimensional probability. Previous work used similar tools to obtain bounds on the list decodability of random linear codes, but the bounds did not scale with the size of the alphabet. In this paper, we use a chaining argument to deal with large alphabet sizes.","PeriodicalId":123501,"journal":{"name":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591796.2591797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

We show that any q-ary code with sufficiently good distance can be randomly punctured to obtain, with high probability, a code that is list decodable up to radius 1 --- 1/q --- ε with near-optimal rate and list sizes. Our results imply that "most" Reed-Solomon codes are list decodable beyond the Johnson bound, settling the longstanding open question of whether any Reed Solomon codes meet this criterion. More precisely, we show that a Reed-Solomon code with random evaluation points is, with high probability, list decodable up to radius 1 --- ε with list sizes O(1/ε) and rate Ω(ε). As a second corollary of our argument, we obtain improved bounds on the list decodability of random linear codes over large fields. Our approach exploits techniques from high dimensional probability. Previous work used similar tools to obtain bounds on the list decodability of random linear codes, but the bounds did not scale with the size of the alphabet. In this paper, we use a chaining argument to deal with large alphabet sizes.
对于高噪声,每个列表可解码的代码都有大量的接近最佳速率的穿孔
我们证明了任何具有足够好距离的q-ary码都可以随机穿孔,以高概率获得半径为1—1/q—ε的列表可解码码,并且具有接近最优的速率和列表大小。我们的结果表明,“大多数”里德-所罗门码在约翰逊界之外是列表可解码的,解决了是否有里德-所罗门码满足这一标准的长期开放问题。更准确地说,我们证明了具有随机评估点的Reed-Solomon码,在高概率下,列表可解码半径为1—ε,列表大小为O(1/ε),速率为Ω(ε)。作为我们论证的第二个推论,我们得到了大域上随机线性码的列表可解码性的改进界。我们的方法利用了高维概率的技术。以前的工作使用类似的工具来获得随机线性代码的列表可解码性的界限,但是界限并没有随着字母表的大小而缩放。在本文中,我们使用链式参数来处理大的字母大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信