{"title":"A Generic Mean Field Convergence Result for Systems of Interacting Objects","authors":"J. Boudec, D. McDonald, Jochen Mundinger","doi":"10.1109/QEST.2007.3","DOIUrl":null,"url":null,"abstract":"We consider a model for interacting objects, where the evolution of each object is given by a finite state Markov chain, whose transition matrix depends on the present and the past of the distribution of states of all objects. This is a general model of wide applicability; we mention as examples: TCP connections, HTTP flows, robot swarms, reputation systems. We show that when the number of objects is large, the occupancy measure of the system converges to a deterministic dynamical system (the \"mean field\") with dimension the number of states of an individual object. We also prove a fast simulation result, which allows to simulate the evolution of a few particular objects imbedded in a large system. We illustrate how this can be used to model the determination of reputation in large populations, with various liar strategies.","PeriodicalId":249627,"journal":{"name":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"185","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2007.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 185
Abstract
We consider a model for interacting objects, where the evolution of each object is given by a finite state Markov chain, whose transition matrix depends on the present and the past of the distribution of states of all objects. This is a general model of wide applicability; we mention as examples: TCP connections, HTTP flows, robot swarms, reputation systems. We show that when the number of objects is large, the occupancy measure of the system converges to a deterministic dynamical system (the "mean field") with dimension the number of states of an individual object. We also prove a fast simulation result, which allows to simulate the evolution of a few particular objects imbedded in a large system. We illustrate how this can be used to model the determination of reputation in large populations, with various liar strategies.