American Options in the Heston Model With Stochastic Interest Rate

S. Boyarchenko, S. Levendorskii
{"title":"American Options in the Heston Model With Stochastic Interest Rate","authors":"S. Boyarchenko, S. Levendorskii","doi":"10.2139/ssrn.1031282","DOIUrl":null,"url":null,"abstract":"We consider the Heston model with the stochastic interest rate of the CIR type and more general models with stochastic volatility and interest rates depending on two CIR - factors. Time derivative and infinitesimal generator of the process for factors that determine the dynamics of the interest rate and/or volatility are discretized. The result is a sequence of embedded perpetual options arising in the time - discretization of a Markov - modulated Levy model. Options in this sequence are solved using an iteration method based on the Wiener - Hopf factorization. Typical shapes of the early exercise boundary are shown, and good agreement of option prices with prices calculated with the Longstaff - Schwartz method and Medvedev - Scaillet asymptotic method is demonstrated.","PeriodicalId":244217,"journal":{"name":"EFA 2008 Athens Meetings (Archive)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EFA 2008 Athens Meetings (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1031282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We consider the Heston model with the stochastic interest rate of the CIR type and more general models with stochastic volatility and interest rates depending on two CIR - factors. Time derivative and infinitesimal generator of the process for factors that determine the dynamics of the interest rate and/or volatility are discretized. The result is a sequence of embedded perpetual options arising in the time - discretization of a Markov - modulated Levy model. Options in this sequence are solved using an iteration method based on the Wiener - Hopf factorization. Typical shapes of the early exercise boundary are shown, and good agreement of option prices with prices calculated with the Longstaff - Schwartz method and Medvedev - Scaillet asymptotic method is demonstrated.
随机利率下赫斯顿模型下的美式期权
我们考虑了具有CIR型随机利率的赫斯顿模型和具有随机波动率和利率的更一般的模型,这些模型取决于两个CIR -因子。对决定利率和/或波动率动态的因素的过程的时间导数和无穷小发生器进行离散化。结果是在马尔可夫调制列维模型的时间离散化过程中产生的嵌入永久期权序列。该序列中的选项采用基于维纳-霍普夫分解的迭代方法求解。给出了典型的早期行权边界形状,并证明了期权价格与Longstaff - Schwartz方法和Medvedev - Scaillet渐近方法计算的价格具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信