Binary-SDMOPSO and its application in channel selection for Brain-Computer Interfaces

N. Al Moubayed, Bashar Awwad Shiekh Hasan, J. Q. Gan, Andrei V. Petrovski, J. Mccall
{"title":"Binary-SDMOPSO and its application in channel selection for Brain-Computer Interfaces","authors":"N. Al Moubayed, Bashar Awwad Shiekh Hasan, J. Q. Gan, Andrei V. Petrovski, J. Mccall","doi":"10.1109/UKCI.2010.5625570","DOIUrl":null,"url":null,"abstract":"In [1], we introduced Smart Multi-Objective Particle Swarm Optimisation using Decomposition (SDMOPSO). The method uses the decomposition approach proposed in Multi-Objective Evolutionary Algorithms based on Decomposition (MOEA/D), whereby a multi-objective problem (MOP) is represented as several scalar aggregation problems. The scalar aggregation problems are viewed as particles in a swarm; each particle assigns weights to every optimisation objective. The problem is solved then as a Multi-Objective Particle Swarm Optimisation (MOPSO), in which every particle uses information from a set of defined neighbours. This work customize SDMOSPO to cover binary problems and applies the proposed binary method on the channel selection problem for Brain-Computer Interfaces(BCI).","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In [1], we introduced Smart Multi-Objective Particle Swarm Optimisation using Decomposition (SDMOPSO). The method uses the decomposition approach proposed in Multi-Objective Evolutionary Algorithms based on Decomposition (MOEA/D), whereby a multi-objective problem (MOP) is represented as several scalar aggregation problems. The scalar aggregation problems are viewed as particles in a swarm; each particle assigns weights to every optimisation objective. The problem is solved then as a Multi-Objective Particle Swarm Optimisation (MOPSO), in which every particle uses information from a set of defined neighbours. This work customize SDMOSPO to cover binary problems and applies the proposed binary method on the channel selection problem for Brain-Computer Interfaces(BCI).
二进制sdmopso及其在脑机接口信道选择中的应用
在[1]中,我们介绍了使用分解的智能多目标粒子群优化(SDMOPSO)。该方法采用基于分解的多目标进化算法(MOEA/D)中的分解方法,将多目标问题(MOP)表示为多个标量聚集问题。标量聚集问题被看作是一群粒子;每个粒子为每个优化目标分配权重。然后用多目标粒子群优化(MOPSO)来解决问题,其中每个粒子使用一组定义的邻居的信息。本文对SDMOSPO进行了定制,以解决二进制问题,并将提出的二进制方法应用于脑机接口(BCI)的信道选择问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信