N. Al Moubayed, Bashar Awwad Shiekh Hasan, J. Q. Gan, Andrei V. Petrovski, J. Mccall
{"title":"Binary-SDMOPSO and its application in channel selection for Brain-Computer Interfaces","authors":"N. Al Moubayed, Bashar Awwad Shiekh Hasan, J. Q. Gan, Andrei V. Petrovski, J. Mccall","doi":"10.1109/UKCI.2010.5625570","DOIUrl":null,"url":null,"abstract":"In [1], we introduced Smart Multi-Objective Particle Swarm Optimisation using Decomposition (SDMOPSO). The method uses the decomposition approach proposed in Multi-Objective Evolutionary Algorithms based on Decomposition (MOEA/D), whereby a multi-objective problem (MOP) is represented as several scalar aggregation problems. The scalar aggregation problems are viewed as particles in a swarm; each particle assigns weights to every optimisation objective. The problem is solved then as a Multi-Objective Particle Swarm Optimisation (MOPSO), in which every particle uses information from a set of defined neighbours. This work customize SDMOSPO to cover binary problems and applies the proposed binary method on the channel selection problem for Brain-Computer Interfaces(BCI).","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
In [1], we introduced Smart Multi-Objective Particle Swarm Optimisation using Decomposition (SDMOPSO). The method uses the decomposition approach proposed in Multi-Objective Evolutionary Algorithms based on Decomposition (MOEA/D), whereby a multi-objective problem (MOP) is represented as several scalar aggregation problems. The scalar aggregation problems are viewed as particles in a swarm; each particle assigns weights to every optimisation objective. The problem is solved then as a Multi-Objective Particle Swarm Optimisation (MOPSO), in which every particle uses information from a set of defined neighbours. This work customize SDMOSPO to cover binary problems and applies the proposed binary method on the channel selection problem for Brain-Computer Interfaces(BCI).