A Multi-collective, IoT-enabled, Adaptive Smart Farming Architecture

Giorgos Kakamoukas, Panayiotis Sariciannidis, G. Livanos, M. Zervakis, Dimitris Ramnalis, Vasilis Polychronos, Thomi Karamitsou, A. Folinas, N. Tsitsiokas
{"title":"A Multi-collective, IoT-enabled, Adaptive Smart Farming Architecture","authors":"Giorgos Kakamoukas, Panayiotis Sariciannidis, G. Livanos, M. Zervakis, Dimitris Ramnalis, Vasilis Polychronos, Thomi Karamitsou, A. Folinas, N. Tsitsiokas","doi":"10.1109/IST48021.2019.9010236","DOIUrl":null,"url":null,"abstract":"Smart Farming (SF) or Precision Agriculture (PA) use precise and efficient approaches for monitoring and processing information from farms, crops, forestry, and livestock aiming at more productive and sustainable rural development. Internet of Things (IoT) is the ecosystem that can provide effective real-time information gathering and processing mechanisms, while supporting cloud access and decision-making mechanisms. Despite the notable progress in the SF field, the ability of these systems to adapt into different types of crops in order to constitute a ready-to-use tool for agricultural stakeholders remains a challenge. In this paper we present a flexible and easy-to-adopt architecture for applying modern IoT-enabled technologies in the context of SF. The proposed architecture encloses Wireless Sensor Networks (WSNs), meteorological stations and Unmanned Aerial Vehicles (UAVs) along with an information processing system that leverages machine learning and computing technologies. The innovation of the proposed architecture lies in the creation of an integrated monitoring and decision support system aiming at production increasing, efficient allocation of resources and protection of plant capital from exogenous (weather and pests) and endogenous (diseases) factors.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Smart Farming (SF) or Precision Agriculture (PA) use precise and efficient approaches for monitoring and processing information from farms, crops, forestry, and livestock aiming at more productive and sustainable rural development. Internet of Things (IoT) is the ecosystem that can provide effective real-time information gathering and processing mechanisms, while supporting cloud access and decision-making mechanisms. Despite the notable progress in the SF field, the ability of these systems to adapt into different types of crops in order to constitute a ready-to-use tool for agricultural stakeholders remains a challenge. In this paper we present a flexible and easy-to-adopt architecture for applying modern IoT-enabled technologies in the context of SF. The proposed architecture encloses Wireless Sensor Networks (WSNs), meteorological stations and Unmanned Aerial Vehicles (UAVs) along with an information processing system that leverages machine learning and computing technologies. The innovation of the proposed architecture lies in the creation of an integrated monitoring and decision support system aiming at production increasing, efficient allocation of resources and protection of plant capital from exogenous (weather and pests) and endogenous (diseases) factors.
多集体、物联网、自适应智能农业架构
智能农业(SF)或精准农业(PA)使用精确和有效的方法来监测和处理来自农场、作物、林业和畜牧业的信息,旨在提高农村的生产力和可持续发展。物联网(IoT)是能够提供有效的实时信息收集和处理机制的生态系统,同时支持云访问和决策机制。尽管在SF领域取得了显著进展,但这些系统适应不同类型作物的能力,以构成农业利益相关者的即用型工具,仍然是一个挑战。在本文中,我们提出了一个灵活且易于采用的架构,用于在SF环境中应用现代物联网技术。拟议的架构包括无线传感器网络(wsn)、气象站和无人机(uav),以及利用机器学习和计算技术的信息处理系统。拟议建筑的创新之处在于创建一个综合监测和决策支持系统,旨在提高产量,有效分配资源,保护植物资本免受外源(天气和害虫)和内源(疾病)因素的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信