Izumi Yamashita, Akiyoshi Murakami, Stephanie Cairns, F. Galindo-Rueda
{"title":"Measuring the AI content of government-funded R&D projects","authors":"Izumi Yamashita, Akiyoshi Murakami, Stephanie Cairns, F. Galindo-Rueda","doi":"10.1787/7b43b038-en","DOIUrl":null,"url":null,"abstract":"This report presents the results of a proof of concept for a new analytical infrastructure (“Fundstat”) for analysing government funding of R&D at the project level, exploiting the wealth of text-based information about funded projects. Reflecting the growth in popularity of artificial intelligence (AI) and the OECD Council Recommendation on AI’s emphasis on R&D investment, the report focuses on analysing government investments into AI-related R&D. Using text mining tools, it documents the creation of a list of key terms used to identify AI-related R&D projects contained in 13 funding databases from eight OECD countries and the EU, provides estimates for the total number and volume of government R&D funding, and characterises their AI funding portfolio. The methods and findings developed in this study also serve as a prototype for a new distributed mechanism capable of measuring and analysing government R&D support across key OECD priority areas and topics.","PeriodicalId":247534,"journal":{"name":"OECD Science, Technology and Industry Working Papers","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OECD Science, Technology and Industry Working Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1787/7b43b038-en","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This report presents the results of a proof of concept for a new analytical infrastructure (“Fundstat”) for analysing government funding of R&D at the project level, exploiting the wealth of text-based information about funded projects. Reflecting the growth in popularity of artificial intelligence (AI) and the OECD Council Recommendation on AI’s emphasis on R&D investment, the report focuses on analysing government investments into AI-related R&D. Using text mining tools, it documents the creation of a list of key terms used to identify AI-related R&D projects contained in 13 funding databases from eight OECD countries and the EU, provides estimates for the total number and volume of government R&D funding, and characterises their AI funding portfolio. The methods and findings developed in this study also serve as a prototype for a new distributed mechanism capable of measuring and analysing government R&D support across key OECD priority areas and topics.