Estimation of Passenger Flow in a Bus Route using Kalman Filter

V. G S, Hari V S, Suryakumar Shivasagaran
{"title":"Estimation of Passenger Flow in a Bus Route using Kalman Filter","authors":"V. G S, Hari V S, Suryakumar Shivasagaran","doi":"10.1109/ICACCS48705.2020.9074363","DOIUrl":null,"url":null,"abstract":"This paper summarizes the idea of passenger flow estimation using Kalman Filter. It is always beneficial if the buses are coming at the proper times and thus reducing the waiting time of passengers. The arrival of buses, passenger flow, traffic flow are all random phenomena. The passenger flow can be modelled as a Geometric Brownian motion. The estimation of passenger flow in any route is beneficial for the proper scheduling of buses, while maintaining an apparent rise in the bottom line of bus operators. The Kalman Filtering model is used to estimate the passenger data.","PeriodicalId":439003,"journal":{"name":"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS48705.2020.9074363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper summarizes the idea of passenger flow estimation using Kalman Filter. It is always beneficial if the buses are coming at the proper times and thus reducing the waiting time of passengers. The arrival of buses, passenger flow, traffic flow are all random phenomena. The passenger flow can be modelled as a Geometric Brownian motion. The estimation of passenger flow in any route is beneficial for the proper scheduling of buses, while maintaining an apparent rise in the bottom line of bus operators. The Kalman Filtering model is used to estimate the passenger data.
基于卡尔曼滤波的公交线路客流估计
本文总结了利用卡尔曼滤波估计客流的思想。如果公共汽车在适当的时间到来,从而减少乘客的等待时间,这总是有益的。公交车的到来、客流、车流都是随机现象。客流可以用几何布朗运动来建模。对任何路线上的客流进行估算,都有利于公交的合理调度,同时保持公交运营商底线的明显上升。采用卡尔曼滤波模型对乘客数据进行估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信