Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation

Pawel Jocko, B. Ombuki-Berman, A. Engelbrecht
{"title":"Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation","authors":"Pawel Jocko, B. Ombuki-Berman, A. Engelbrecht","doi":"10.1109/CEC55065.2022.9870299","DOIUrl":null,"url":null,"abstract":"This study conducts a sensitivity analysis of the recently proposed multi-guide particle swarm optimisation (MG-PSO) algorithm for dynamic multi-objective optimisation problems (DMOPs). The MGPSO is a multi-swarm approach where each subswarm optimises one of the objectives. This paper further adapts the MGPSO algorithm to solve DMOPs by proposing alternative balance coefficient update strategies to allow efficient tracking of the changing Pareto-optimal front (POF). A total of twenty-nine benchmark functions and six performance measures were implemented to help with this task. The experiments were run against five different environment types to determine whether the MGPSO can solve problems with various spatial and temporal severities. The best control parameter update strategy was then compared with other state-of-the-art dynamic multi-objective optimisation algorithms (DMOAs). An extensive empirical analysis shows that MGPSO with the balance coefficient parameter re-initialized after the environment change achieves very competitive and oftentimes better performance when compared with the competing algorithms.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study conducts a sensitivity analysis of the recently proposed multi-guide particle swarm optimisation (MG-PSO) algorithm for dynamic multi-objective optimisation problems (DMOPs). The MGPSO is a multi-swarm approach where each subswarm optimises one of the objectives. This paper further adapts the MGPSO algorithm to solve DMOPs by proposing alternative balance coefficient update strategies to allow efficient tracking of the changing Pareto-optimal front (POF). A total of twenty-nine benchmark functions and six performance measures were implemented to help with this task. The experiments were run against five different environment types to determine whether the MGPSO can solve problems with various spatial and temporal severities. The best control parameter update strategy was then compared with other state-of-the-art dynamic multi-objective optimisation algorithms (DMOAs). An extensive empirical analysis shows that MGPSO with the balance coefficient parameter re-initialized after the environment change achieves very competitive and oftentimes better performance when compared with the competing algorithms.
基于多导粒子群优化的动态多目标优化
本文对动态多目标优化问题(dops)的多导粒子群优化算法(MG-PSO)进行了灵敏度分析。MGPSO是一种多群体方法,其中每个子群体优化一个目标。本文进一步将MGPSO算法应用于dmpp求解,提出了可选的平衡系数更新策略,以实现对变化的Pareto-optimal front (POF)的有效跟踪。总共实现了29个基准函数和6个性能度量来帮助完成这项任务。在五种不同的环境类型下进行了实验,以确定MGPSO是否可以解决不同时空严重程度的问题。然后将最佳控制参数更新策略与其他最先进的动态多目标优化算法(DMOAs)进行比较。大量的实证分析表明,在环境变化后重新初始化平衡系数参数的MGPSO与竞争算法相比,具有很强的竞争力,并且往往具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信