SAR Image Change Detection Via UR-ISTA

Che Chen, Yuanfan Zheng, Xue Jiang, Xingzhao Liu
{"title":"SAR Image Change Detection Via UR-ISTA","authors":"Che Chen, Yuanfan Zheng, Xue Jiang, Xingzhao Liu","doi":"10.1109/IGARSS46834.2022.9884312","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel dictionary learning model based on the idea of deep unrolling to deal with the synthetic aperture radar (SAR) image change detection problem. Deep unrolling aims at unrolling the iterative algorithm into a trainable neural network. In our proposed method, the idea of unrolling is applied to the Iterative Shrinkage Threshold Algorithm (ISTA), which is one of classic algorithms for dictionary learning. Then, the proposed Unrolling Iterative Shrinkage Threshold Algorithm (UR-ISTA), is utilized to obtain the sparse codes of the difference results. Finally, the change map is computed by k-means clustering algorithm. The advantage of UR-ISTA method is relatively low time cost, which makes it possible to add dictionary updating step to calculate specific feature vectors. Experimental results show that the proposed approach has superior accuracy and precision compared to several well-known change detection techniques. The proposed UR-ISTA algorithm shows more robustness than another sparse representation algorithm.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel dictionary learning model based on the idea of deep unrolling to deal with the synthetic aperture radar (SAR) image change detection problem. Deep unrolling aims at unrolling the iterative algorithm into a trainable neural network. In our proposed method, the idea of unrolling is applied to the Iterative Shrinkage Threshold Algorithm (ISTA), which is one of classic algorithms for dictionary learning. Then, the proposed Unrolling Iterative Shrinkage Threshold Algorithm (UR-ISTA), is utilized to obtain the sparse codes of the difference results. Finally, the change map is computed by k-means clustering algorithm. The advantage of UR-ISTA method is relatively low time cost, which makes it possible to add dictionary updating step to calculate specific feature vectors. Experimental results show that the proposed approach has superior accuracy and precision compared to several well-known change detection techniques. The proposed UR-ISTA algorithm shows more robustness than another sparse representation algorithm.
SAR图像变化检测通过UR-ISTA
本文提出了一种基于深度展开思想的字典学习模型来解决合成孔径雷达(SAR)图像变化检测问题。深度展开的目的是将迭代算法展开为可训练的神经网络。在我们提出的方法中,将展开的思想应用于迭代收缩阈值算法(ISTA),这是经典的字典学习算法之一。然后,利用提出的展开迭代收缩阈值算法(Unrolling Iterative Shrinkage Threshold Algorithm, UR-ISTA)对差分结果进行稀疏编码。最后,采用k-means聚类算法计算变化图。UR-ISTA方法的优点是相对较低的时间成本,这使得可以增加字典更新步骤来计算特定的特征向量。实验结果表明,与几种已知的变化检测技术相比,该方法具有更高的准确度和精密度。本文提出的UR-ISTA算法比其他稀疏表示算法具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信