PLANET: making progress with commit processing in unpredictable environments

Gene Pang, Tim Kraska, M. Franklin, A. Fekete
{"title":"PLANET: making progress with commit processing in unpredictable environments","authors":"Gene Pang, Tim Kraska, M. Franklin, A. Fekete","doi":"10.1145/2588555.2588558","DOIUrl":null,"url":null,"abstract":"Latency unpredictability in a database system can come from many factors, such as load spikes in the workload, inter-query interactions from consolidation, or communication costs in cloud computing or geo-replication. High variance and high latency environments make developing interactive applications difficult, because transactions may take too long to complete, or fail unexpectedly. We propose Predictive Latency-Aware NEtworked Transactions (PLANET), a new transaction programming model and underlying system support to address this issue. The model exposes the internal progress of the transaction, provides opportunities for application callbacks, and incorporates commit likelihood prediction to enable good user experience even in the presence of significant transaction delays. The mechanisms underlying PLANET can be used for admission control, thus improving overall performance in high contention situations. In this paper, we present this new transaction programming model, demonstrate its expressiveness via several use cases, and evaluate its performance using a strongly consistent geo-replicated database across five data centers.","PeriodicalId":314442,"journal":{"name":"Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2588555.2588558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Latency unpredictability in a database system can come from many factors, such as load spikes in the workload, inter-query interactions from consolidation, or communication costs in cloud computing or geo-replication. High variance and high latency environments make developing interactive applications difficult, because transactions may take too long to complete, or fail unexpectedly. We propose Predictive Latency-Aware NEtworked Transactions (PLANET), a new transaction programming model and underlying system support to address this issue. The model exposes the internal progress of the transaction, provides opportunities for application callbacks, and incorporates commit likelihood prediction to enable good user experience even in the presence of significant transaction delays. The mechanisms underlying PLANET can be used for admission control, thus improving overall performance in high contention situations. In this paper, we present this new transaction programming model, demonstrate its expressiveness via several use cases, and evaluate its performance using a strongly consistent geo-replicated database across five data centers.
PLANET:在不可预测的环境中进行提交处理
数据库系统中的延迟不可预测性可能来自许多因素,例如工作负载中的负载峰值、来自整合的查询间交互,或者云计算或地理复制中的通信成本。高变化和高延迟环境使得开发交互式应用程序变得困难,因为事务可能需要很长时间才能完成,或者意外失败。我们提出预测延迟感知网络事务(PLANET),一种新的事务编程模型和底层系统支持来解决这个问题。该模型公开事务的内部进程,为应用程序回调提供机会,并合并提交可能性预测,以便即使在存在重大事务延迟的情况下也能提供良好的用户体验。PLANET的底层机制可用于准入控制,从而在高争用情况下提高整体性能。在本文中,我们介绍了这种新的事务编程模型,通过几个用例演示了它的表达性,并使用跨五个数据中心的高度一致的地理复制数据库评估了它的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信