{"title":"Unsupervised graph-based patterns extraction for emotion classification","authors":"C. Argueta, Elvis Saravia, Yi-Shin Chen","doi":"10.1145/2808797.2809419","DOIUrl":null,"url":null,"abstract":"Traditional classifiers require extracting high dimensional feature representations, which become computationally expensive to process and can misrepresent or deteriorate the accuracy of a classifier. By utilizing a more representative list of extracted patterns, we can improve the precision and recall of a classification task. In this paper, we propose an unsupervised graph-based approach for bootstrapping Twitter-specific emotion-bearing patterns. Due to its novel bootstrapping process, the full system is also adaptable to different domains and classification problems. Furthermore, we explore how emotion-bearing patterns can help boost an emotion classification task. The experimented results demonstrate that the extracted patterns are effective in identifying emotions for English, Spanish and French Twitter streams.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2809419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Traditional classifiers require extracting high dimensional feature representations, which become computationally expensive to process and can misrepresent or deteriorate the accuracy of a classifier. By utilizing a more representative list of extracted patterns, we can improve the precision and recall of a classification task. In this paper, we propose an unsupervised graph-based approach for bootstrapping Twitter-specific emotion-bearing patterns. Due to its novel bootstrapping process, the full system is also adaptable to different domains and classification problems. Furthermore, we explore how emotion-bearing patterns can help boost an emotion classification task. The experimented results demonstrate that the extracted patterns are effective in identifying emotions for English, Spanish and French Twitter streams.