Explainable AI in Decision Support Systems : A Case Study: Predicting Hospital Readmission Within 30 Days of Discharge

Alexander Vucenovic, Osama Ali-Ozkan, Clifford Ekwempe, Ozgur Eren
{"title":"Explainable AI in Decision Support Systems : A Case Study: Predicting Hospital Readmission Within 30 Days of Discharge","authors":"Alexander Vucenovic, Osama Ali-Ozkan, Clifford Ekwempe, Ozgur Eren","doi":"10.1109/CCECE47787.2020.9255721","DOIUrl":null,"url":null,"abstract":"Explainable models are a critical requirement for predictive analytics applications in the healthcare domain. In this work we develop a hypothetical clinical decision support system for the classification task of predicting hospital readmission within 30 days of discharge. We compare a baseline logistic regression model with an implementation of the coordinate descent algorithm known as lasso. We choose lasso because it inherently performs variable selection during optimization which leads to an explainable model. Using model evaluation data we achieve an area under the ROC curve score of 0.795 improving on the baseline score of 0.683 without inflating the feature space.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Explainable models are a critical requirement for predictive analytics applications in the healthcare domain. In this work we develop a hypothetical clinical decision support system for the classification task of predicting hospital readmission within 30 days of discharge. We compare a baseline logistic regression model with an implementation of the coordinate descent algorithm known as lasso. We choose lasso because it inherently performs variable selection during optimization which leads to an explainable model. Using model evaluation data we achieve an area under the ROC curve score of 0.795 improving on the baseline score of 0.683 without inflating the feature space.
决策支持系统中可解释的人工智能:一个案例研究:预测出院后30天内的再入院情况
可解释模型是医疗保健领域预测分析应用程序的关键需求。在这项工作中,我们开发了一个假设的临床决策支持系统,用于预测出院后30天内再入院的分类任务。我们将基线逻辑回归模型与坐标下降算法lasso的实现进行比较。我们选择lasso是因为它在优化过程中固有地执行变量选择,从而导致一个可解释的模型。使用模型评价数据,我们在不膨胀特征空间的情况下,在基线得分0.683的基础上获得了0.795的ROC曲线下面积得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信