Self-Augmented Heterogeneous Face Recognition

Zongcai Sun, Chaoyou Fu, Mandi Luo, R. He
{"title":"Self-Augmented Heterogeneous Face Recognition","authors":"Zongcai Sun, Chaoyou Fu, Mandi Luo, R. He","doi":"10.1109/IJCB52358.2021.9484335","DOIUrl":null,"url":null,"abstract":"Heterogeneous face recognition (HFR) is quite challenging due to the large discrepancy introduced by cross-domain face images. The limited number of paired face images results in a severe overfitting problem in existing methods. To tackle this issue, we proposes a novel self-augmentation method named Mixed Adversarial Examples and Logits Replay (MAELR). Concretely, we first generate adversarial examples, and mix them with clean examples in an interpolating way for data augmentation. Simultaneously, we extend the definition of the adversarial examples according to cross-domain problems. Benefiting from this extension, we can reduce domain discrepancy to extract domain-invariant features. We further propose a diversity preserving loss via logits replay, which effectively uses the discriminative features obtained on the large-scale VIS dataset. In this way, we improve the feature diversity that can not be obtained from mixed adversarial examples methods. Extensive experiments demonstrate that our method alleviates the over-fitting problem, thus significantly improving the recognition performance of HFR.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Heterogeneous face recognition (HFR) is quite challenging due to the large discrepancy introduced by cross-domain face images. The limited number of paired face images results in a severe overfitting problem in existing methods. To tackle this issue, we proposes a novel self-augmentation method named Mixed Adversarial Examples and Logits Replay (MAELR). Concretely, we first generate adversarial examples, and mix them with clean examples in an interpolating way for data augmentation. Simultaneously, we extend the definition of the adversarial examples according to cross-domain problems. Benefiting from this extension, we can reduce domain discrepancy to extract domain-invariant features. We further propose a diversity preserving loss via logits replay, which effectively uses the discriminative features obtained on the large-scale VIS dataset. In this way, we improve the feature diversity that can not be obtained from mixed adversarial examples methods. Extensive experiments demonstrate that our method alleviates the over-fitting problem, thus significantly improving the recognition performance of HFR.
自增强异构人脸识别
由于跨域人脸图像带来的巨大差异,异构人脸识别(HFR)具有很大的挑战性。由于配对的人脸图像数量有限,导致现有方法存在严重的过拟合问题。为了解决这个问题,我们提出了一种新的自增强方法,称为混合对抗示例和Logits重播(MAELR)。具体来说,我们首先生成对抗性示例,并以插值方式将它们与干净示例混合以进行数据增强。同时,我们根据跨域问题扩展了对抗性示例的定义。受益于这种扩展,我们可以减少域差异以提取域不变特征。我们进一步提出了一种通过logits重放来保持多样性损失的方法,该方法有效地利用了大规模VIS数据集上获得的判别特征。通过这种方法,我们改善了混合对抗样例方法无法获得的特征多样性。大量的实验表明,我们的方法缓解了过拟合问题,从而显著提高了HFR的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信