Camera motion estimation using circulant compressive sensing matrices

S. Narayanan, A. Makur
{"title":"Camera motion estimation using circulant compressive sensing matrices","authors":"S. Narayanan, A. Makur","doi":"10.1109/ICICS.2013.6782832","DOIUrl":null,"url":null,"abstract":"In this paper, we exploit the relationship between the translational image motion and the Compressive Sensing (CS) measurements in order to perform the camera motion estimation in the compressed domain. Various CS measurement matrices have been investigated, and most of them are random Gaussian/Bernoulli matrices. Data acquisition using such matrices becomes computationally expensive for real time applications. Data acquisition using circulant CS matrices can be efficiently implemented in hardware using shift registers. We propose to use a circulant CS matrix on image frames to obtain the CS measurements and then to perform motion estimation in the measurement domain. Experimental results show that our method guarantees high motion estimation accuracy with few measurements. Our proposed method finds its application in video shot segmentation and video tracking where fast camera motion estimation is needed.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we exploit the relationship between the translational image motion and the Compressive Sensing (CS) measurements in order to perform the camera motion estimation in the compressed domain. Various CS measurement matrices have been investigated, and most of them are random Gaussian/Bernoulli matrices. Data acquisition using such matrices becomes computationally expensive for real time applications. Data acquisition using circulant CS matrices can be efficiently implemented in hardware using shift registers. We propose to use a circulant CS matrix on image frames to obtain the CS measurements and then to perform motion estimation in the measurement domain. Experimental results show that our method guarantees high motion estimation accuracy with few measurements. Our proposed method finds its application in video shot segmentation and video tracking where fast camera motion estimation is needed.
基于循环压缩感知矩阵的摄像机运动估计
在本文中,我们利用平移图像运动和压缩感知(CS)测量之间的关系,以便在压缩域中进行相机运动估计。研究了各种CS测量矩阵,其中大多数是随机高斯/伯努利矩阵。对于实时应用程序来说,使用这种矩阵进行数据采集在计算上非常昂贵。使用循环CS矩阵的数据采集可以使用移位寄存器在硬件上有效地实现。我们建议在图像帧上使用循环CS矩阵来获得CS测量值,然后在测量域中进行运动估计。实验结果表明,该方法可以在较少的测量量下保证较高的运动估计精度。该方法适用于视频镜头分割和视频跟踪等需要快速估计摄像机运动的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信