Motion control for intelligent ground vehicles based on the selection of paths using fuzzy inference

Shiwei Wang, Adam Panzica, T. Padır
{"title":"Motion control for intelligent ground vehicles based on the selection of paths using fuzzy inference","authors":"Shiwei Wang, Adam Panzica, T. Padır","doi":"10.1109/TePRA.2013.6556354","DOIUrl":null,"url":null,"abstract":"This paper describes a motion planning technique for intelligent ground vehicles using a path selection algorithm based on fuzzy inference. The approach extends on the motion planning algorithm known as driving with tentacles. The selection of the tentacle (a drivable path) to follow relies on the calculation of a weighted cost function for each tentacle in the current speed set and depends on variables such as the distance to the desired position, speed, and the closeness of a tentacle to any obstacles. A Matlab simulation and the practical implementation of the fuzzy inference rule on a Clearpath Husky robot within the Robot Operating System (ROS) framework are provided.","PeriodicalId":102284,"journal":{"name":"2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TePRA.2013.6556354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes a motion planning technique for intelligent ground vehicles using a path selection algorithm based on fuzzy inference. The approach extends on the motion planning algorithm known as driving with tentacles. The selection of the tentacle (a drivable path) to follow relies on the calculation of a weighted cost function for each tentacle in the current speed set and depends on variables such as the distance to the desired position, speed, and the closeness of a tentacle to any obstacles. A Matlab simulation and the practical implementation of the fuzzy inference rule on a Clearpath Husky robot within the Robot Operating System (ROS) framework are provided.
基于模糊推理路径选择的智能地面车辆运动控制
本文介绍了一种基于模糊推理的路径选择算法的智能地面车辆运动规划技术。该方法扩展了被称为“触手驾驶”的运动规划算法。触手(可驾驶路径)的选择依赖于当前速度集中每个触手的加权成本函数的计算,并取决于诸如到期望位置的距离、速度和触手与任何障碍物的接近程度等变量。给出了模糊推理规则在机器人操作系统(ROS)框架下Clearpath Husky机器人上的Matlab仿真和实际实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信