Accurate Vegetation Models with Low Computational Complexity for Ray Tracing

Enes Aksoy, Haroon Khan, Yun Chen, Leszek Raschkowski, L. Thiele, Sławomir Stańczak
{"title":"Accurate Vegetation Models with Low Computational Complexity for Ray Tracing","authors":"Enes Aksoy, Haroon Khan, Yun Chen, Leszek Raschkowski, L. Thiele, Sławomir Stańczak","doi":"10.1109/IMAS55807.2023.10066883","DOIUrl":null,"url":null,"abstract":"The frequency bands for communication standards are continuously increasing, as it can be seen from fifth generation (5G) and beyond 5G communications. This is done, to increase the capabilities of communication systems and enable new technologies, e.g. autonomous driving and wireless sensor networks. Therefore, reliable channel characterization methods, such as ray tracing, are needed to implement and guarantee the functionality of these new technologies. The effects of vegetation on ray tracing simulations are often times dismissed, due to their modeling challenges and high resulting computational overhead for simulations, as well as their generally small influence on the communication channel. However, with increasing frequencies for 5G, these effects cannot be dismissed anymore. So despite the modeling challenges, vegetation effects have to be included in ray tracing simulations for an accurate channel characterization. This paper aims to create a vegetation model with low computational complexity for ray tracing simulations, while depicting the effects of real vegetation as close as possible. It is shown, that even simple approaches to model vegetation with low computational overhead are often times sufficient to capture significant effects on the communication channel.","PeriodicalId":246624,"journal":{"name":"2023 International Microwave and Antenna Symposium (IMAS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Microwave and Antenna Symposium (IMAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMAS55807.2023.10066883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The frequency bands for communication standards are continuously increasing, as it can be seen from fifth generation (5G) and beyond 5G communications. This is done, to increase the capabilities of communication systems and enable new technologies, e.g. autonomous driving and wireless sensor networks. Therefore, reliable channel characterization methods, such as ray tracing, are needed to implement and guarantee the functionality of these new technologies. The effects of vegetation on ray tracing simulations are often times dismissed, due to their modeling challenges and high resulting computational overhead for simulations, as well as their generally small influence on the communication channel. However, with increasing frequencies for 5G, these effects cannot be dismissed anymore. So despite the modeling challenges, vegetation effects have to be included in ray tracing simulations for an accurate channel characterization. This paper aims to create a vegetation model with low computational complexity for ray tracing simulations, while depicting the effects of real vegetation as close as possible. It is shown, that even simple approaches to model vegetation with low computational overhead are often times sufficient to capture significant effects on the communication channel.
低计算复杂度的精确植被射线追踪模型
通信标准的频带在不断增加,从第五代(5G)及5G以后的通信中可以看出。这样做是为了提高通信系统的能力并启用新技术,例如自动驾驶和无线传感器网络。因此,需要可靠的通道表征方法,如光线追踪,来实现和保证这些新技术的功能。植被对光线追踪模拟的影响常常被忽略,因为它们的建模挑战和模拟的高计算开销,以及它们通常对通信信道的影响很小。然而,随着5G频率的增加,这些影响不能再被忽视了。因此,尽管建模存在挑战,但为了准确地描述通道特征,必须将植被效应包括在光线追踪模拟中。本文旨在创建一个低计算复杂度的植被模型用于光线追踪模拟,同时尽可能接近真实植被的效果。研究表明,即使是简单的方法,以低计算开销来模拟植被,往往足以捕获对通信信道的显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信