Approximating the Held-Karp Bound for Metric TSP in Nearly-Linear Time

C. Chekuri, Kent Quanrud
{"title":"Approximating the Held-Karp Bound for Metric TSP in Nearly-Linear Time","authors":"C. Chekuri, Kent Quanrud","doi":"10.1109/FOCS.2017.78","DOIUrl":null,"url":null,"abstract":"We give a nearly linear-time randomized approximation scheme for the Held-Karp bound [22] for Metric-TSP. Formally, given an undirected edge-weighted graph G = (V,E) on m edges and ε 0, the algorithm outputs in O(m log^4 n/ε^2) time, with high probability, a (1 + ε)-approximation to the Held-Karp bound on the Metric-TSP instance induced by the shortest path metric on G. The algorithm can also be used to output a corresponding solution to the Subtour Elimination LP. We substantially improve upon the O(m^2 log^2(m)/ε^2) running time achieved previously by Garg and Khandekar.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We give a nearly linear-time randomized approximation scheme for the Held-Karp bound [22] for Metric-TSP. Formally, given an undirected edge-weighted graph G = (V,E) on m edges and ε 0, the algorithm outputs in O(m log^4 n/ε^2) time, with high probability, a (1 + ε)-approximation to the Held-Karp bound on the Metric-TSP instance induced by the shortest path metric on G. The algorithm can also be used to output a corresponding solution to the Subtour Elimination LP. We substantially improve upon the O(m^2 log^2(m)/ε^2) running time achieved previously by Garg and Khandekar.
在近线性时间内逼近度量TSP的hold - karp界
我们给出了Metric-TSP的Held-Karp界[22]的近似线性时间随机逼近格式。形式上,给定一个无向边权图G = (V,E)在m条边和ε上;0时,该算法在O(m log^4 n/ε^2)时间内,以高概率得到g上最短路径度量引起的度量- tsp实例上的hold - karp界的(1 + ε)-近似。该算法还可用于输出子tour Elimination LP的相应解。我们大大改进了Garg和Khandekar之前实现的O(m^2 log^2(m)/ε^2)运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信