A general methodology for integration of microarray data

C. Huttenhower, O. Troyanskaya
{"title":"A general methodology for integration of microarray data","authors":"C. Huttenhower, O. Troyanskaya","doi":"10.1109/CSBW.2005.8","DOIUrl":null,"url":null,"abstract":"We present a method for the integration of microarray datasets employing a fixed structure Bayesian network. Rather than learning all interactions simultaneously, we focus on undirected functional interactions between pairs of genes. Using Expectation Maximization, we learn one set of network parameters per functional category of interest. As we integrate further processing methods and refine the network structure, we hope both to improve performance and to increase the ability of the technique to expose specific biological properties of microarrays.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method for the integration of microarray datasets employing a fixed structure Bayesian network. Rather than learning all interactions simultaneously, we focus on undirected functional interactions between pairs of genes. Using Expectation Maximization, we learn one set of network parameters per functional category of interest. As we integrate further processing methods and refine the network structure, we hope both to improve performance and to increase the ability of the technique to expose specific biological properties of microarrays.
集成微阵列数据的一般方法
我们提出了一种采用固定结构贝叶斯网络集成微阵列数据集的方法。我们不是同时学习所有的相互作用,而是专注于基因对之间的无定向功能相互作用。使用期望最大化,我们学习每个感兴趣的功能类别的一组网络参数。随着我们整合进一步的处理方法和完善网络结构,我们希望既能提高性能,又能增加该技术暴露微阵列特定生物特性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信