A vision-based approach for autonomous landing

A. Cabrera-Ponce, J. Martínez-Carranza
{"title":"A vision-based approach for autonomous landing","authors":"A. Cabrera-Ponce, J. Martínez-Carranza","doi":"10.1109/RED-UAS.2017.8101655","DOIUrl":null,"url":null,"abstract":"Monocular vision is frequently used in Micro Air Vehicles for many tasks such autonomous navigation, tracking, search and autonomous landing. To address this problem and in the context of autonomous landing of a MAV on a platform, we use a template-based matching in an image pyramid scheme in combination with an edge detector. Thus, the landing zone is localised via image processing in a frame-to-frame basis. Images are captured by the MAV's onboard camera of the MAV and processed with a multi-scale image processing strategy to detect the landing zone at different scales. We assessed our approach in real-time experiments using a Parrot Bebop 2.0 in outdoors and at different heights.","PeriodicalId":299104,"journal":{"name":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2017.8101655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Monocular vision is frequently used in Micro Air Vehicles for many tasks such autonomous navigation, tracking, search and autonomous landing. To address this problem and in the context of autonomous landing of a MAV on a platform, we use a template-based matching in an image pyramid scheme in combination with an edge detector. Thus, the landing zone is localised via image processing in a frame-to-frame basis. Images are captured by the MAV's onboard camera of the MAV and processed with a multi-scale image processing strategy to detect the landing zone at different scales. We assessed our approach in real-time experiments using a Parrot Bebop 2.0 in outdoors and at different heights.
一种基于视觉的自主着陆方法
单目视觉在微型飞行器中被广泛应用于自主导航、跟踪、搜索和自主着陆等任务。为了解决这个问题,并在平台上自主着陆的背景下,我们在图像金字塔方案中结合边缘检测器使用基于模板的匹配。因此,通过逐帧的图像处理对着陆区域进行定位。图像由MAV的机载摄像头采集,并采用多尺度图像处理策略进行处理,以检测不同尺度的着陆区域。我们利用Parrot Bebop 2.0在室外和不同高度的实时实验中评估了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信