{"title":"Development of a Flex-PLI System Model and Investigations of Injury","authors":"Yong Han, In-Hyeok Lee, Whe-Ro Lee","doi":"10.3384/ECP1814853","DOIUrl":null,"url":null,"abstract":"Pedestrian accidents give direct damage to the human body. Pedestrians do not have any safety devices and it results in a significant risk of injury to the pedestrians as compared to other accidents (Carroll, 2014). To protect pedestrians, EURO NCAP, JNCAP, and various pedestrian safety laws are enforced. Korea also imposes KNCAP and related laws. Assessment of pedestrian injuries is performed throughout impact tests using the head, upper leg, and lower leg impactor. (Yong, 2006) Pedestrian injury simulation is normally performed using the Finite element method at the early design stage to reduce a cost and research period. FE simulation requires detail design data, highperformance equipment and long computation time. FE simulation gives detail results how each part is deformed, how much energy is absorbed and how much injury values are resulted in. But on the other hand, it requires well-designed simulation matrix and many simulations to find contributions to the injury values of various design parameters at the initial design stage. The system model simulation allows more intuitive parametric studies than the existing detailed FE studies. The computation is much faster than the FE simulation, results are obtained results within in a few seconds and contributions of various parameters are directly get throughout simple parametric simulations. In this study, the impactor and vehicle system model is developed for the lower leg injury risk assessment. The system model of lower leg impactor, Flex-PLI is developed by comparing to its FE model and system model parameters are calibrated against several static and dynamic certification tests of FLEX-PLI. The vehicle is modeled to equivalent mass-spring-damper systems and its parameters are obtained from existing FE simulation results. And finally developed system model is verified against FE simulation results.","PeriodicalId":378465,"journal":{"name":"Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18, 2018","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP1814853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pedestrian accidents give direct damage to the human body. Pedestrians do not have any safety devices and it results in a significant risk of injury to the pedestrians as compared to other accidents (Carroll, 2014). To protect pedestrians, EURO NCAP, JNCAP, and various pedestrian safety laws are enforced. Korea also imposes KNCAP and related laws. Assessment of pedestrian injuries is performed throughout impact tests using the head, upper leg, and lower leg impactor. (Yong, 2006) Pedestrian injury simulation is normally performed using the Finite element method at the early design stage to reduce a cost and research period. FE simulation requires detail design data, highperformance equipment and long computation time. FE simulation gives detail results how each part is deformed, how much energy is absorbed and how much injury values are resulted in. But on the other hand, it requires well-designed simulation matrix and many simulations to find contributions to the injury values of various design parameters at the initial design stage. The system model simulation allows more intuitive parametric studies than the existing detailed FE studies. The computation is much faster than the FE simulation, results are obtained results within in a few seconds and contributions of various parameters are directly get throughout simple parametric simulations. In this study, the impactor and vehicle system model is developed for the lower leg injury risk assessment. The system model of lower leg impactor, Flex-PLI is developed by comparing to its FE model and system model parameters are calibrated against several static and dynamic certification tests of FLEX-PLI. The vehicle is modeled to equivalent mass-spring-damper systems and its parameters are obtained from existing FE simulation results. And finally developed system model is verified against FE simulation results.