Identification of hammerstein systems by the hermite series estimate with application to flexible robot manipulators control

A. Krzyżak, J. Sasiadek
{"title":"Identification of hammerstein systems by the hermite series estimate with application to flexible robot manipulators control","authors":"A. Krzyżak, J. Sasiadek","doi":"10.1109/ICCON.1989.770551","DOIUrl":null,"url":null,"abstract":"In this paper we study the identification of single-input, single-output discrete Hammerstein system. Such a system consists of two cascaded subsystems: nonlinear, memoryless subsystem followed by a dynamic, linear subsystem. We identify the parameters of the dynamic, linear subsystem by the correlation and Newton-Gauss method. The main results concern the estimation of the nonlinear, memoryless subsystem. We impose no conditions on the functional form of the nonlinear subsystem, recovering the nonlinearity using the Hermite series regression estimate. We show the density-free pointwise and global convergence of the estimate, that is, convergence is proven for inputs with arbitrary density function and virtually all nonlinearities. The rates of pointwise as well as global convergence are obtained for smooth input densities and for nonlinearities of Lipschitz type. The application of the proposed algorithm to the compensation of a flexible manipulator deflection in robot assembly is presented.","PeriodicalId":131568,"journal":{"name":"Proceedings. ICCON IEEE International Conference on Control and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ICCON IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCON.1989.770551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the identification of single-input, single-output discrete Hammerstein system. Such a system consists of two cascaded subsystems: nonlinear, memoryless subsystem followed by a dynamic, linear subsystem. We identify the parameters of the dynamic, linear subsystem by the correlation and Newton-Gauss method. The main results concern the estimation of the nonlinear, memoryless subsystem. We impose no conditions on the functional form of the nonlinear subsystem, recovering the nonlinearity using the Hermite series regression estimate. We show the density-free pointwise and global convergence of the estimate, that is, convergence is proven for inputs with arbitrary density function and virtually all nonlinearities. The rates of pointwise as well as global convergence are obtained for smooth input densities and for nonlinearities of Lipschitz type. The application of the proposed algorithm to the compensation of a flexible manipulator deflection in robot assembly is presented.
基于hermite级数估计的hammerstein系统辨识及其在柔性机器人控制中的应用
本文研究了单输入、单输出离散Hammerstein系统的辨识问题。这样的系统由两个级联子系统组成:非线性的、无记忆的子系统,然后是动态的、线性的子系统。利用相关法和牛顿-高斯法确定了动态线性子系统的参数。主要结果涉及非线性无记忆子系统的估计。我们对非线性子系统的泛函形式不加任何条件,利用Hermite级数回归估计恢复非线性。我们证明了估计的无密度点和全局收敛性,即证明了具有任意密度函数和几乎所有非线性的输入的收敛性。得到了光滑输入密度和非线性Lipschitz型的点向收敛率和全局收敛率。将该算法应用于机器人装配中柔性机械手的偏转补偿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信