Seprox

A. M. Parvathy, Sarada Krithivasan, Sanchari Sen, Anand Raghunathan
{"title":"Seprox","authors":"A. M. Parvathy, Sarada Krithivasan, Sanchari Sen, Anand Raghunathan","doi":"10.1145/3508352.3549435","DOIUrl":null,"url":null,"abstract":"Compression techniques such as quantization and pruning are indispensable for deploying state-of-the-art Deep Neural Networks (DNNs) on resource-constrained edge devices. Quantization is widely used in practice – many commercial platforms already support 8bits, with recent trends towards ultra-low precision (4-bits and below). Pruning, which increases network sparsity (incidence of zero-valued weights), enables compression by storing only the nonzero weights and their indices. Unfortunately, the compression benefits of pruning deteriorate or even vanish in ultra-low precision DNNs. This is due to (i) the unfavorable tradeoff between the number of bits needed to store a weight (which reduces with lower precision) and the number of bits needed to encode an index (which remains unchanged), and (ii) the lower sparsity levels that are achievable at lower precisions.We propose Seprox, a new compression scheme that overcomes the aforementioned challenges by exploiting two key observations about ultra-low precision DNNs. First, with lower precision, fewer weight values are possible, leading to increased incidence of frequently-occurring weights and weight sequences. Second, some weight values occur rarely and can be eliminated by replacing them with similar values. Leveraging these insights, Seprox encodes frequently-occurring weight sequences (as opposed to individual weights) while using the eliminated weight values to encode them, thereby avoiding indexing overheads and achieving higher compression. Additionally, Seprox uses approximation techniques to increase the frequencies of the encoded sequences. Across six ultralow precision DNNs trained on the Cifar10 and ImageNet datasets, Seprox achieves model compressions, energy improvements and speed-ups of up to 35.2%, 14.8% and 18.2% respectively.","PeriodicalId":367046,"journal":{"name":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compression techniques such as quantization and pruning are indispensable for deploying state-of-the-art Deep Neural Networks (DNNs) on resource-constrained edge devices. Quantization is widely used in practice – many commercial platforms already support 8bits, with recent trends towards ultra-low precision (4-bits and below). Pruning, which increases network sparsity (incidence of zero-valued weights), enables compression by storing only the nonzero weights and their indices. Unfortunately, the compression benefits of pruning deteriorate or even vanish in ultra-low precision DNNs. This is due to (i) the unfavorable tradeoff between the number of bits needed to store a weight (which reduces with lower precision) and the number of bits needed to encode an index (which remains unchanged), and (ii) the lower sparsity levels that are achievable at lower precisions.We propose Seprox, a new compression scheme that overcomes the aforementioned challenges by exploiting two key observations about ultra-low precision DNNs. First, with lower precision, fewer weight values are possible, leading to increased incidence of frequently-occurring weights and weight sequences. Second, some weight values occur rarely and can be eliminated by replacing them with similar values. Leveraging these insights, Seprox encodes frequently-occurring weight sequences (as opposed to individual weights) while using the eliminated weight values to encode them, thereby avoiding indexing overheads and achieving higher compression. Additionally, Seprox uses approximation techniques to increase the frequencies of the encoded sequences. Across six ultralow precision DNNs trained on the Cifar10 and ImageNet datasets, Seprox achieves model compressions, energy improvements and speed-ups of up to 35.2%, 14.8% and 18.2% respectively.
Seprox
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信