Using Branch and Bound and Local Search Methods to Solve Multi-objective Machine Scheduling Problem

Doha Adel Abbass
{"title":"Using Branch and Bound and Local Search Methods to Solve Multi-objective Machine Scheduling Problem","authors":"Doha Adel Abbass","doi":"10.1109/CAS47993.2019.9075460","DOIUrl":null,"url":null,"abstract":"In this research, we suggested the problem scheduling of n jobs on a single machine to decrease schedule multi-objective function; the sum cost of total completion time, the total number of late jobs, total tardiness and the maximum tardiness $(\\Sigma C_{i}+ \\Sigma U_{i}+\\Sigma T_{i}+T_{max})$, which is NP-hard problem. In this research, we proposed the branch and bound algorithm (BAB) to obtain the optimal solution. We used some local search methods (descent method (DM) and genetic algorithm (GA)) to obtain an optimal solution or a near-optimal solution. Also, we developed a simple algorithm (SPT-MA) to find a solution near the optimum solution. The (SPT-MA) algorithm proofs its good performance in solving the problem in a reasonable time.","PeriodicalId":202291,"journal":{"name":"2019 First International Conference of Computer and Applied Sciences (CAS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference of Computer and Applied Sciences (CAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAS47993.2019.9075460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this research, we suggested the problem scheduling of n jobs on a single machine to decrease schedule multi-objective function; the sum cost of total completion time, the total number of late jobs, total tardiness and the maximum tardiness $(\Sigma C_{i}+ \Sigma U_{i}+\Sigma T_{i}+T_{max})$, which is NP-hard problem. In this research, we proposed the branch and bound algorithm (BAB) to obtain the optimal solution. We used some local search methods (descent method (DM) and genetic algorithm (GA)) to obtain an optimal solution or a near-optimal solution. Also, we developed a simple algorithm (SPT-MA) to find a solution near the optimum solution. The (SPT-MA) algorithm proofs its good performance in solving the problem in a reasonable time.
用分支定界法和局部搜索法求解多目标机器调度问题
在本研究中,我们提出了n个作业在一台机器上调度的问题,以减少调度的多目标函数;总完工时间、总迟到作业数、总迟到时间和最大迟到时间的总成本$(\Sigma C_{i}+ \Sigma U_{i}+\Sigma T_{i}+T_{max})$,这是np困难问题。在本研究中,我们提出了分支定界算法(BAB)来获得最优解。我们使用了一些局部搜索方法(下降法(DM)和遗传算法(GA))来获得最优解或近最优解。此外,我们开发了一个简单的算法(SPT-MA)来寻找接近最优解的解。(SPT-MA)算法在合理的时间内求解问题,具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信