Safe Robot Learning in Assistive Devices through Neural Network Repair

K. Majd, Geoffrey Clark, Tanmay Khandait, Siyu Zhou, S. Sankaranarayanan, Georgios Fainekos, H. B. Amor
{"title":"Safe Robot Learning in Assistive Devices through Neural Network Repair","authors":"K. Majd, Geoffrey Clark, Tanmay Khandait, Siyu Zhou, S. Sankaranarayanan, Georgios Fainekos, H. B. Amor","doi":"10.48550/arXiv.2303.04431","DOIUrl":null,"url":null,"abstract":"Assistive robotic devices are a particularly promising field of application for neural networks (NN) due to the need for personalization and hard-to-model human-machine interaction dynamics. However, NN based estimators and controllers may produce potentially unsafe outputs over previously unseen data points. In this paper, we introduce an algorithm for updating NN control policies to satisfy a given set of formal safety constraints, while also optimizing the original loss function. Given a set of mixed-integer linear constraints, we define the NN repair problem as a Mixed Integer Quadratic Program (MIQP). In extensive experiments, we demonstrate the efficacy of our repair method in generating safe policies for a lower-leg prosthesis.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.04431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Assistive robotic devices are a particularly promising field of application for neural networks (NN) due to the need for personalization and hard-to-model human-machine interaction dynamics. However, NN based estimators and controllers may produce potentially unsafe outputs over previously unseen data points. In this paper, we introduce an algorithm for updating NN control policies to satisfy a given set of formal safety constraints, while also optimizing the original loss function. Given a set of mixed-integer linear constraints, we define the NN repair problem as a Mixed Integer Quadratic Program (MIQP). In extensive experiments, we demonstrate the efficacy of our repair method in generating safe policies for a lower-leg prosthesis.
基于神经网络修复的辅助设备安全机器人学习
由于需要个性化和难以建模的人机交互动力学,辅助机器人设备是神经网络(NN)特别有前途的应用领域。然而,基于神经网络的估计器和控制器可能会对先前未见过的数据点产生潜在的不安全输出。在本文中,我们引入了一种算法来更新神经网络控制策略以满足给定的一组形式安全约束,同时也优化了原始损失函数。给定一组混合整数线性约束,我们将神经网络修复问题定义为混合整数二次规划(MIQP)。在大量的实验中,我们证明了我们的修复方法在为下肢假体生成安全策略方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信