Near lossless source coding with side information at the decoder: Beyond conditional entropy

E. Yang, Dake He
{"title":"Near lossless source coding with side information at the decoder: Beyond conditional entropy","authors":"E. Yang, Dake He","doi":"10.1109/ITA.2008.4601089","DOIUrl":null,"url":null,"abstract":"In near lossless source coding with decoder only side information, i.e., Slepian-Wolf coding (with one encoder), a source X with finite alphabet X is first encoded, and then later decoded subject to a small error probability with the help of side information Y with finite alphabet Y available only to the decoder. The classical result by Slepian and Wolf shows that the minimum average compression rate achievable asymptotically subject to a small error probability constraint for a memoryless pair (X , Y) is given by the conditional entropy H(X|Y). In this paper, we look beyond conditional entropy and investigate the tradeoff between compression rate and decoding error spectrum in Slepian-Wolf coding when the decoding error probability goes to zero exponentially fast. It is shown that when the decoding error probability goes to zero at the speed of 2-deltan, where delta is a positive constant and n denotes the source sequences' length, the minimum average compression rate achievable asymptotically is strictly greater than H(X|Y) regardless of how small delta is. More specifically, the minimum average compression rate achievable asymptotically is lower bounded by a quantity called the intrinsic conditional entropy Hin(X|Y, delta), which is strictly greater than H(X|Y), and is also asymptotically achievable for small delta.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In near lossless source coding with decoder only side information, i.e., Slepian-Wolf coding (with one encoder), a source X with finite alphabet X is first encoded, and then later decoded subject to a small error probability with the help of side information Y with finite alphabet Y available only to the decoder. The classical result by Slepian and Wolf shows that the minimum average compression rate achievable asymptotically subject to a small error probability constraint for a memoryless pair (X , Y) is given by the conditional entropy H(X|Y). In this paper, we look beyond conditional entropy and investigate the tradeoff between compression rate and decoding error spectrum in Slepian-Wolf coding when the decoding error probability goes to zero exponentially fast. It is shown that when the decoding error probability goes to zero at the speed of 2-deltan, where delta is a positive constant and n denotes the source sequences' length, the minimum average compression rate achievable asymptotically is strictly greater than H(X|Y) regardless of how small delta is. More specifically, the minimum average compression rate achievable asymptotically is lower bounded by a quantity called the intrinsic conditional entropy Hin(X|Y, delta), which is strictly greater than H(X|Y), and is also asymptotically achievable for small delta.
在解码器处具有侧信息的近无损源编码:超越条件熵
在只有解码器侧信息的近无损源编码中,即Slepian-Wolf编码(只有一个编码器),首先编码具有有限字母X的源X,然后在只有解码器可用的具有有限字母Y的侧信息Y的帮助下以很小的错误概率进行解码。Slepian和Wolf的经典结果表明,条件熵H(X|Y)给出无记忆对(X, Y)在小错误概率约束下渐近可达到的最小平均压缩率。在本文中,我们超越条件熵,研究了当译码错误概率呈指数级快速趋近于零时,睡眠-狼编码中压缩率和译码错误谱之间的权衡。结果表明,当解码错误概率以2-delta的速度趋近于零时,无论delta有多小,最小平均压缩率都严格大于H(X|Y),其中delta为正常数,n为源序列长度。更具体地说,渐近可达到的最小平均压缩率下界是一个称为内在条件熵Hin(X|Y, delta)的量,它严格大于H(X|Y),并且对于小的delta也是渐近可达到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信