Sparse algorithms and bounds for statistically and computationally efficient robust estimation

Stefan Dipl.-Ing. Schuster
{"title":"Sparse algorithms and bounds for statistically and computationally efficient robust estimation","authors":"Stefan Dipl.-Ing. Schuster","doi":"10.5281/ZENODO.42410","DOIUrl":null,"url":null,"abstract":"Robust estimators that provide accurate parameter estimates even under the condition that classical assumptions like outlier-free additive Gaussian measurement noise do not hold exactly are of great practical importance in signal processing and measurement science in general. Lots of methods for deriving robust estimators exist. In this paper, we derive novel algorithms for robust estimation by modeling the outliers as a sparse additive vector of unknown deterministic or random parameters. By exploiting the separability of the estimation problem and applying recently developed sparse estimation techniques, algorithms that remove the effect of the outlying observations can be developed. Monte Carlo simulations show that the performance of the developed algorithms is practically equal to the best possible performance given by the Crámer-Rao lower bound (CRB) and the mean-squared error (MSE) of the oracle estimator [1], demonstrating the high accuracy. It is shown that the algorithms can be implemented in a computationally efficient manner. Furthermore, some interesting connections to the popular least absolute deviation (LAD) estimator are shown.","PeriodicalId":331889,"journal":{"name":"2011 19th European Signal Processing Conference","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Robust estimators that provide accurate parameter estimates even under the condition that classical assumptions like outlier-free additive Gaussian measurement noise do not hold exactly are of great practical importance in signal processing and measurement science in general. Lots of methods for deriving robust estimators exist. In this paper, we derive novel algorithms for robust estimation by modeling the outliers as a sparse additive vector of unknown deterministic or random parameters. By exploiting the separability of the estimation problem and applying recently developed sparse estimation techniques, algorithms that remove the effect of the outlying observations can be developed. Monte Carlo simulations show that the performance of the developed algorithms is practically equal to the best possible performance given by the Crámer-Rao lower bound (CRB) and the mean-squared error (MSE) of the oracle estimator [1], demonstrating the high accuracy. It is shown that the algorithms can be implemented in a computationally efficient manner. Furthermore, some interesting connections to the popular least absolute deviation (LAD) estimator are shown.
用于统计和计算效率高的鲁棒估计的稀疏算法和界
鲁棒估计器即使在无离群值加性高斯测量噪声等经典假设不完全成立的情况下也能提供准确的参数估计,这在信号处理和测量科学中具有重要的实际意义。存在许多方法来获得稳健估计量。在本文中,我们通过将异常值建模为未知确定性或随机参数的稀疏相加向量,推导出新的鲁棒估计算法。通过利用估计问题的可分性和应用最近开发的稀疏估计技术,可以开发出消除外围观测值影响的算法。蒙特卡罗模拟表明,所开发算法的性能几乎等于oracle估计器[1]的Crámer-Rao下界(CRB)和均方误差(MSE)给出的最佳性能,显示出较高的精度。结果表明,该算法可以以计算效率高的方式实现。此外,还给出了与常用的最小绝对偏差(LAD)估计量的一些有趣的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信