K. Ambos-Spies, W. Merkle, Jan Reimann, F. Stephan
{"title":"Hausdorff dimension in exponential time","authors":"K. Ambos-Spies, W. Merkle, Jan Reimann, F. Stephan","doi":"10.1109/CCC.2001.933888","DOIUrl":null,"url":null,"abstract":"In this paper we investigate effective versions of Hausdorff dimension which have been recently introduced by Lutz. We focus on dimension in the class E of sets computable in linear exponential time. We determine the dimension of various classes related to fundamental structural properties including different types of autoreducibility and immunity. By a new general invariance theorem for resource-bounded dimension we show that the class of p-m-complete sets for E has dimension 1 in E. Moreover, we show that there are p-m-lower spans in E of dimension /spl Hscr/(/spl beta/) for any rational /spl beta/ between 0 and 1, where /spl Hscr/(/spl beta/) is the binary entropy function. This leads to a new general completeness notion for E that properly extends Lutz's concept of weak completeness. Finally we characterize resource-bounded dimension in terms of martingales with restricted betting ratios and in terms of prediction functions.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
In this paper we investigate effective versions of Hausdorff dimension which have been recently introduced by Lutz. We focus on dimension in the class E of sets computable in linear exponential time. We determine the dimension of various classes related to fundamental structural properties including different types of autoreducibility and immunity. By a new general invariance theorem for resource-bounded dimension we show that the class of p-m-complete sets for E has dimension 1 in E. Moreover, we show that there are p-m-lower spans in E of dimension /spl Hscr/(/spl beta/) for any rational /spl beta/ between 0 and 1, where /spl Hscr/(/spl beta/) is the binary entropy function. This leads to a new general completeness notion for E that properly extends Lutz's concept of weak completeness. Finally we characterize resource-bounded dimension in terms of martingales with restricted betting ratios and in terms of prediction functions.