Cooking Ingredient Recognition Based on the Load on a Chopping Board during Cutting

Yoko Yamakata, Yoshiki Tsuchimoto, Atsushi Hashimoto, Takuya Funatomi, Mayumi Ueda, M. Minoh
{"title":"Cooking Ingredient Recognition Based on the Load on a Chopping Board during Cutting","authors":"Yoko Yamakata, Yoshiki Tsuchimoto, Atsushi Hashimoto, Takuya Funatomi, Mayumi Ueda, M. Minoh","doi":"10.1109/ISM.2011.69","DOIUrl":null,"url":null,"abstract":"This paper presents a method for recognizing recipe ingredients based on the load on a chopping board when ingredients are cut. The load is measured by four sensors attached to the board. Each chop is detected by indentifying a sharp falling edge in the load data. The load features, including the maximum value, duration, impulse, peak position, and kurtosis, are extracted and used for ingredient recognition. Experimental results showed a precision of 98.1% in chop detection and 67.4% in ingredient recognition with a support vector machine (SVM) classifier for 16 common ingredients.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a method for recognizing recipe ingredients based on the load on a chopping board when ingredients are cut. The load is measured by four sensors attached to the board. Each chop is detected by indentifying a sharp falling edge in the load data. The load features, including the maximum value, duration, impulse, peak position, and kurtosis, are extracted and used for ingredient recognition. Experimental results showed a precision of 98.1% in chop detection and 67.4% in ingredient recognition with a support vector machine (SVM) classifier for 16 common ingredients.
基于切菜板负荷的烹饪配料识别
本文提出了一种基于切菜板上的载荷来识别菜谱配料的方法。负载由连接在电路板上的四个传感器测量。通过识别负载数据中的急剧下降沿来检测每个斩波。提取负载特征,包括最大值、持续时间、脉冲、峰位置和峰度,并用于成分识别。实验结果表明,支持向量机(SVM)分类器对16种常见成分的切痕检测准确率为98.1%,成分识别准确率为67.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信