{"title":"Cooking Ingredient Recognition Based on the Load on a Chopping Board during Cutting","authors":"Yoko Yamakata, Yoshiki Tsuchimoto, Atsushi Hashimoto, Takuya Funatomi, Mayumi Ueda, M. Minoh","doi":"10.1109/ISM.2011.69","DOIUrl":null,"url":null,"abstract":"This paper presents a method for recognizing recipe ingredients based on the load on a chopping board when ingredients are cut. The load is measured by four sensors attached to the board. Each chop is detected by indentifying a sharp falling edge in the load data. The load features, including the maximum value, duration, impulse, peak position, and kurtosis, are extracted and used for ingredient recognition. Experimental results showed a precision of 98.1% in chop detection and 67.4% in ingredient recognition with a support vector machine (SVM) classifier for 16 common ingredients.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper presents a method for recognizing recipe ingredients based on the load on a chopping board when ingredients are cut. The load is measured by four sensors attached to the board. Each chop is detected by indentifying a sharp falling edge in the load data. The load features, including the maximum value, duration, impulse, peak position, and kurtosis, are extracted and used for ingredient recognition. Experimental results showed a precision of 98.1% in chop detection and 67.4% in ingredient recognition with a support vector machine (SVM) classifier for 16 common ingredients.