Segmentation of magnetic resonance images using a neuro-fuzzy algorithm

R. Castellanos, S. Mitra
{"title":"Segmentation of magnetic resonance images using a neuro-fuzzy algorithm","authors":"R. Castellanos, S. Mitra","doi":"10.1109/CBMS.2000.856901","DOIUrl":null,"url":null,"abstract":"Evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on the adaptive fuzzy leader clustering (AFLC) algorithm. This approach performs vector quantization by updating the winning prototype of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the valve of a vigilance parameter restricts the number of prototypes representing the feature vectors. The choice of the misclassification rate (MCR) as a quantitative measure shows that AFLC outperforms other existing segmentation methods.","PeriodicalId":189930,"journal":{"name":"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2000.856901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on the adaptive fuzzy leader clustering (AFLC) algorithm. This approach performs vector quantization by updating the winning prototype of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the valve of a vigilance parameter restricts the number of prototypes representing the feature vectors. The choice of the misclassification rate (MCR) as a quantitative measure shows that AFLC outperforms other existing segmentation methods.
基于神经模糊算法的磁共振图像分割
评估了一种基于自适应模糊前导聚类(AFLC)算法的脑磁共振图像分割技术。该方法通过无监督学习过程更新竞争网络的获胜原型来执行矢量量化。MR图像的分割被表述为一个无监督的矢量量化过程,其中警戒参数的值限制了代表特征向量的原型的数量。选择误分类率(MCR)作为定量度量,表明AFLC优于其他现有的分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信