Application of new statistical methods for triangular sensor signal analysis

G. Timergalina, T. Nikishin, E. Denisov, R. Nigmatullin
{"title":"Application of new statistical methods for triangular sensor signal analysis","authors":"G. Timergalina, T. Nikishin, E. Denisov, R. Nigmatullin","doi":"10.1109/APEDE.2016.7879068","DOIUrl":null,"url":null,"abstract":"Application of new statistical methods for triangular sensor signal analysis is considered. The critical parameter here is the center of the laser beam. It is shown that the proposed method allows increasing accuracy of the sensors. Experimental verification has shown that the use of center of mass technique decreases root-mean-square error in 50%. While the proposed centralized integral steps method gives almost the same error but the results are more stable and regular. Additional decrease of the error can be achieved by the use of optimal linear smoothing procedure. The proposed algorithms were approved and adapted to the microprocessor implementation.","PeriodicalId":231207,"journal":{"name":"2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEDE.2016.7879068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Application of new statistical methods for triangular sensor signal analysis is considered. The critical parameter here is the center of the laser beam. It is shown that the proposed method allows increasing accuracy of the sensors. Experimental verification has shown that the use of center of mass technique decreases root-mean-square error in 50%. While the proposed centralized integral steps method gives almost the same error but the results are more stable and regular. Additional decrease of the error can be achieved by the use of optimal linear smoothing procedure. The proposed algorithms were approved and adapted to the microprocessor implementation.
新的统计方法在三角形传感器信号分析中的应用
研究了三角传感器信号分析中统计新方法的应用。这里的关键参数是激光束的中心。结果表明,该方法可以提高传感器的精度。实验验证表明,采用质心技术可使均方根误差降低50%。而所提出的集中积分阶跃法误差几乎相同,但结果更加稳定和规则。采用最优线性平滑法可进一步减小误差。所提出的算法经过验证并适应于微处理器的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信