{"title":"Scheduling Parallel Real-Time Tasks on Multi-core Processors","authors":"Karthik Lakshmanan, S. Kato, R. Rajkumar","doi":"10.1109/RTSS.2010.42","DOIUrl":null,"url":null,"abstract":"Massively multi-core processors are rapidly gaining market share with major chip vendors offering an ever increasing number of cores per processor. From a programming perspective, the sequential programming model does not scale very well for such multi-core systems. Parallel programming models such as OpenMP present promising solutions for more effectively using multiple processor cores. In this paper, we study the problem of scheduling periodic real-time tasks on multiprocessors under the fork join structure used in OpenMP. We illustrate the theoretical best-case and worst-case periodic fork-join task sets from a processor utilization perspective. Based on our observations of these task sets, we provide a partitioned preemptive fixed-priority scheduling algorithm for periodic fork-join tasks. The proposed multiprocessor scheduling algorithm is shown to have a resource augmentation bound of 3.42, which implies that any task set that is feasible on m unit speed processors can be scheduled by the proposed algorithm on m processors that are 3:42 times faster.","PeriodicalId":202891,"journal":{"name":"2010 31st IEEE Real-Time Systems Symposium","volume":"308 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"269","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 31st IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2010.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 269
Abstract
Massively multi-core processors are rapidly gaining market share with major chip vendors offering an ever increasing number of cores per processor. From a programming perspective, the sequential programming model does not scale very well for such multi-core systems. Parallel programming models such as OpenMP present promising solutions for more effectively using multiple processor cores. In this paper, we study the problem of scheduling periodic real-time tasks on multiprocessors under the fork join structure used in OpenMP. We illustrate the theoretical best-case and worst-case periodic fork-join task sets from a processor utilization perspective. Based on our observations of these task sets, we provide a partitioned preemptive fixed-priority scheduling algorithm for periodic fork-join tasks. The proposed multiprocessor scheduling algorithm is shown to have a resource augmentation bound of 3.42, which implies that any task set that is feasible on m unit speed processors can be scheduled by the proposed algorithm on m processors that are 3:42 times faster.